Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Hoàng Huy
Xem chi tiết
Vũ Tri Hải
22 tháng 6 2017 lúc 22:53

3x2 + 17y3 = 3x2 + 9y3 + 8y3 \(\ge\)

Phan Hoàng Huy
23 tháng 6 2017 lúc 10:53

cho hỏi bn tách cái 17y^3 dựa vào j vậy???

The Silent Man
Xem chi tiết
Akai Haruma
8 tháng 7 2017 lúc 14:31

Lời giải:

Áp dụng BĐT Cauchy:

\(3x^3+17y^3=3x^3+8y^3+9y^3\geq 3\sqrt[3]{216x^3y^6}\)

\(\Leftrightarrow 3x^3+17y^3\geq 18xy^2\)(đpcm)

Dấu bằng xảy ra khi \(x=y=0\)

Đoàn Quốc Huy
Xem chi tiết
Loan Trinh
Xem chi tiết
alibaba nguyễn
7 tháng 6 2018 lúc 15:34

1/ Đặt \(\hept{\begin{cases}\sqrt{x-2013}=a\\\sqrt{x-2014}=b\end{cases}}\)

Thì ta có:

\(\frac{\sqrt{x-2013}}{x+2}+\frac{\sqrt{x-2014}}{x}=\frac{a}{a^2+2015}+\frac{b}{b^2+2014}\)

\(\le\frac{a}{2a\sqrt{2015}}+\frac{b}{2b\sqrt{2014}}=\frac{1}{2\sqrt{2015}}+\frac{1}{2\sqrt{2014}}\)

alibaba nguyễn
7 tháng 6 2018 lúc 15:38

2/ \(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\)

\(\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)\)

\(=\frac{3}{4}\)

Trần Dương An
Xem chi tiết
daotrinhthanhchung
Xem chi tiết
zZz Cool Kid_new zZz
9 tháng 3 2019 lúc 22:13

Gọi 8 số nguyên dương tùy ý là \(a_1,a_2,a_3,....,a_8\)

với \(1\le a_1\le a_2\le a_3\le a_4\le......\le a_8\le20\)

Nhận thấy rằng với ba số nguyên dương a,b,c thỏa mãn \(a\ge b\ge c\) và \(b+c>a\) thì khi đó a,b,c là độ dài 3 cạnh tam giác.

Nếu trong các số \(a_1,a_2,a_3,a_4,.....a_8\) không chọn được 3 số nào là độ dài 3 cạnh của tam giác thì:

\(a_6\ge a_7+a_8\ge1+1=2\)

\(a_5\ge a_6+a_7=2+1=3\)

\(a_4\ge a_5+a_6=2+3=5\)

\(a_3\ge a_4+a_5=3+5=8\)

\(a_2\ge a_3+a_4=8+5=13\)

\(a_1\ge a_2+a_3=13+8=21\)(trái với giả thiết)

Vậy điều giả sử là sai.

=> điều cần chứng minh

Nguyệt
13 tháng 5 2019 lúc 19:53

sửa lại từ dòng 5 cách bạn zZz Phan Gia Huy zZz 

\(a3\ge a1+a2\ge1+1=2\)

\(a4\ge a2+a3\ge1+2=3\)

\(a5\ge a3+a4\ge2+3=5\)

\(a6\ge a4+a5\ge3+5=8\)

\(a7\ge a5+a6\ge5+8=13\)

\(a8\ge a6+a7\ge13+8=21\)(trái với giả sử)

Vậy ...

zZz Cool Kid_new zZz
13 tháng 5 2019 lúc 20:18

@Boul đẹp trai_tán gái đổ 100%:thanks nhiều

Châu Trần
Xem chi tiết
Thắng Nguyễn
25 tháng 7 2017 lúc 11:02

vừa làm trên học24 xong mà ko đưa dc link thôi nhai lại vậy :v

Áp dụng BĐT AM-GM ta có:

\(\frac{a^3}{\sqrt{b^2+3}}+\frac{a^3}{\sqrt{b^2+3}}+\frac{b^2+3}{7\sqrt{7}}\)

\(\ge3\sqrt[3]{\frac{a^3}{\sqrt{b^2+3}}\cdot\frac{a^3}{\sqrt{b^2+3}}\cdot\frac{b^2+3}{7\sqrt{7}}}=\frac{3a^2}{\sqrt{7}}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{b^3}{\sqrt{c^2+3}}+\frac{b^3}{\sqrt{c^2+3}}+\frac{c^2+3}{7\sqrt{7}}\ge\frac{3b^2}{\sqrt{7}};\frac{c^3}{\sqrt{a^2+3}}+\frac{c^3}{\sqrt{a^2+3}}+\frac{a^2+3}{7\sqrt{7}}\ge\frac{3c^2}{\sqrt{7}}\)

Cộng theo vế 3 BĐT trên ta có:

\(2P+\frac{a^2+b^2+c^2+9}{7\sqrt{7}}\ge\frac{3\left(a^2+b^2+c^2\right)}{\sqrt{7}}\)

\(\Rightarrow P\ge\frac{\frac{\frac{\left(a+b+c\right)^2}{3}+9}{7\sqrt{7}}-\frac{3\cdot\frac{\left(a+b+c\right)^2}{3}}{\sqrt{7}}}{2}\ge\frac{\frac{\sqrt{7}}{21}}{2}=\frac{\sqrt{7}}{42}\)

Xảy ra khi \(a=b=c=\frac{1}{3}\)

Có thiếu dấu . nào ko nhỉ :v, tự nhai lại nên vẫn thấy ngon :v

Anh
25 tháng 7 2017 lúc 10:42

bài này 
áp dụng cô si ta có 
a³/b + ab ≥ 2a² 
b³/c + bc ≥ 2b² 
c³/a + ac ≥ 2c² 
+ + + 3 cái lại 
=> a³/b + b³/c + c³/a ≥ 2a² + 2b² + 2c² - ab - ac - bc 
mặt khác ta có 
ab + bc + ac ≤ a² + b² + c² (cái này chứng minh dễ dàng nhé) 
thay vào 
=> a³/b + b³/c + c³/a ≥ a² + b² + c² ≥ 1 
=>minP = 1 
dấu bằng xảy ra <=. a = b = c = 1/√3 
( bài này sử dụng A + B ≥ 2C mà B ≤ C => A ≥ C)

k và kết bạn cho mình nha !!!

Trần Huỳnh Thanh Long
26 tháng 7 2017 lúc 21:03

Chào các bạn mình có ý kiến như sau: Bài làm của bạn Thắng Nguyễn mik nghĩ rằng bị sơ xuất một chỗ là  thêm lượng \(\frac{b^2+3}{7\sqrt{7}}\)

là không phù hợp vì nếu thay x=1/3 vào thì \(\frac{a^3}{\sqrt{b^2+3}}\)không thế bằng \(\frac{b^2+3}{7\sqrt{7}}\) do đó dấu bằng không xảy ra. Đó la ý kiến của mình, có j sai mong các bạn thông cảm

like game
Xem chi tiết
Tran Le Khanh Linh
9 tháng 8 2020 lúc 8:26

xét hiệu a3+b3+3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)=(a+b+c)\(\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\ge0\)

đẳng thức xảy ra khi a=b=c

Khách vãng lai đã xóa
Nobi Nobita
9 tháng 8 2020 lúc 8:35

Ta có: \(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)^3-3.\left(a+b\right).c.\left(a+b+c\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right).\left[\left(a+b+c\right)^2-3\left(a+b\right).c-3ab\right]\)

\(=\left(a+b+c\right).\left(a^2+b^2+c^2+2ab+2bc+2ca-3ac-3bc-3ab\right)\)

\(=\left(a+b+c\right).\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=\frac{1}{2}.\left(a+b+c\right).\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)\)

\(=\frac{1}{2}.\left(a+b+c\right).\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\right]\)

\(=\frac{1}{2}.\left(a+b+c\right).\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)( Vì a, b, c không âm )

\(\Rightarrow a^3+b^3+c^3\ge3abc\)( đpcm )

Khách vãng lai đã xóa
Anh Triệu Quốc
Xem chi tiết