Áp dụng bđt Cauchy cho 3 số không âm ta có:
\(3x^3+17y^3=3x^3+8y^3+9y^3\ge3\sqrt{3x^3.8y^3.9y^3}=3.3x.2y^2=18xy^2\left(đpcm\right)\)
Dấu "='' xảy ra khi x = y = 0
Áp dụng bđt Cauchy cho 3 số không âm ta có:
\(3x^3+17y^3=3x^3+8y^3+9y^3\ge3\sqrt{3x^3.8y^3.9y^3}=3.3x.2y^2=18xy^2\left(đpcm\right)\)
Dấu "='' xảy ra khi x = y = 0
Cho 3 số thực dương a,b,c thỏa mãn ab+bc+ca=1
Chứng minh rằng: \(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\le\frac{3}{2}.\)
(Chứng minh BĐT dựa vào BĐT Cauchy)
Cho a,b,c là các số thực dương có tổng bằng 1. Tìm GTNN của biểu thức
\(P=\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{c^3}{\sqrt{a^2+3}}\)(Chứng minh BĐT dựa vào BĐT Cauchy)
Từ một điểm A nằm ngoài đường tròn tâm O, kế tiếp tuyến AB với (O) (B là tiếp điểm). Kẻ BH vuông góc với AO tại H. Vẽ cát tuyến ACD tùy ý với (O). Chứng minh AC.AD=AH.AO
Với mỗi số nguyên dương \(n\), đặt \(s_{n} = (2 - \sqrt{3})^n + (2 + \sqrt{3})^n\)
a) Chứng minh rằng: \(s_{n+2} = 4s_{n+1} - s_{n}\)
b) Chứng minh rằng sn là số nguyên với mọi số nguyên dương n và tìm số dư của s2018 khi chia cho 3.
c) Chứng minh rằng \([(2 + \sqrt{3})^n] = s_{n} - 1\) với mọi số nguyên dương \(n\), trong đó kí hiệu [x] là phần nguyên của số thực \(x\).
1.A=\(\dfrac{\sqrt{x}}{\sqrt{x}+3}\) và B=\(\dfrac{2\sqrt{x}}{\sqrt{x}-3}\) \(-\dfrac{3x+9}{x-9}\) với x ≥ 0,x ≠9
a) Tính giá trị biểu thức A khi x=16
b) Chứng minh A+3=\(\dfrac{3}{\sqrt{x}+3}\)
Mn giúp mk vs nhé ạ!!!
Cho:
X = {-4; -2; -1; 0; \(\dfrac{1}{2}\); 3}
Y = {-12; -3; 0; -\(\dfrac{3}{2}\); -9; 6; 3; 12}
f là hàm số từ X đến Y được xác định bởi công thức y = f(x) = -3x. Hãy lập bảng giá trị tương ứng giữa x và y.
Cho x, y \(\in R\) thỏa mãn:
\(\left(x+\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)=2\)
Chứng minh rằng: \(x^3+y^3+3xy=1\)
Chứng minh rằng với mỗi số nguyên a thì biểu thức sau luôn nhận giá trị là một số nguyên:
D=\(\sqrt{a\left(a+1\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+6\right)+36}\)
Cho x+\(\sqrt{3}=2\)\(.Tính\) giá trị biểu thức H= \(x^5-3x^4-3x^3+6x^2-20x+2024\)ta được