Cho X = {-1; 0; 1; 2}, f là 1 quan hệ từ tập hơn X đến tập hơn số thực R được xác định bởi các cặp giá trị tương ứng sau:
x | 0 | 1 | 2 | -1 | 0 |
f(x) | 1 | 0 | 1 | 1 | 2 |
f có phải là một hàm số không? Giải thích.
Cho x,y là các số dương thỏa mãn x + y \(\le\)3. Tìm giá trị nhỏ nhất của biểu thức A = \(\dfrac{2}{3xy}+\sqrt[]{\dfrac{3}{y+1}}\)
1.A=\(\dfrac{\sqrt{x}}{\sqrt{x}+3}\) và B=\(\dfrac{2\sqrt{x}}{\sqrt{x}-3}\) \(-\dfrac{3x+9}{x-9}\) với x ≥ 0,x ≠9
a) Tính giá trị biểu thức A khi x=16
b) Chứng minh A+3=\(\dfrac{3}{\sqrt{x}+3}\)
Mn giúp mk vs nhé ạ!!!
a) Tính giá trị biểu thức A=\(5\sqrt{\dfrac{1}{1}}+\dfrac{5}{2}\sqrt{20}=\sqrt{80}\)
b) Hàm số y=(\(\sqrt{2}-1\)) x-3 đồng biến hay nghịch biến. Vì sao?
c) Trong mặt phảng tọa độ Oxy cho đường thẳng y=(\(m^2+2\)) x+m và đường thẳng y=6x+2. Tìm m để 2 đường thẳng đó song song với nhau
Tìm tập xác định của các hàm số sau:
a) y = -2x + 3
b) y = 2x2 - 3x + 1
c) y = \(\dfrac{x}{x^2-1}\)
d) y = \(\sqrt{1-x}\)
A=\(2\sqrt{12}-\sqrt{75}+\sqrt{\left(\sqrt{3}-2\right)^2}\)
B=\(\dfrac{x}{x-16}+\dfrac{2}{\sqrt{x}-4}+\dfrac{2}{\sqrt{x}+4}\)( Với x\(\ge\)0; x\(\ne\)16)
a) Rút gọn 2 biểu thức A, B
b) Tìm giá trị của x để B\(-\dfrac{1}{2}\)A=0
A=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)(x≥0,x≠4,x≠9)
1,Tìm x để A.\(\sqrt{x}\)=-1
2,Tìm x∈ Z để A∈Z
3, Tìm Min \(\dfrac{1}{A}\)
4,Tìm x∈N để A là số nguyên dương lớn nhất
5,Khi A+\(|A|\)=0, tìm GTLN của bth A.\(\sqrt{x}\)
Bài 1: cho a, b > 0 và a + b <= 1. CMR: \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}>=3\)
Bài 2: cho x, y, z >=0 thỏa mãn x + y + z >0. CMR: \(\dfrac{x}{4x+4y+z}+\dfrac{y}{4y+4z+x}+\dfrac{z}{4z+4x+y}< =\dfrac{1}{3}\)
Bài 3: cho x, y, z > 0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\)
Tìm GTNN của \(\dfrac{1}{\sqrt{2x^2+y^2+3}}+\dfrac{1}{\sqrt{2y^2+z^2+3}}+\dfrac{1}{\sqrt{2z^2}+x^2+3}\)
Cho biểu thức:
A = (\(\sqrt{x}\) + \(\dfrac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)) : (\(\dfrac{x}{\sqrt{xy}+y}\) + \(\dfrac{y}{\sqrt{xy}-x}\) - \(\dfrac{x+y}{\sqrt{xy}}\))
a) Rút gọn A
b) Tính giá trị của biểu thức A biết x = 3; y = 4 + 2\(\sqrt{3}\)