Chứng minh: 1/21+ 1/22+ 1/23+ 1/24+ ... + 1/80 không phải là số tự nhiên
Chứng minh: \(\dfrac{1}{21}\)+\(\dfrac{1}{22}\)+\(\dfrac{1}{23}\)+\(\dfrac{1}{24}\)+....+\(\dfrac{1}{80}\)không phải là một số tự nhiên.
Chứng minh S = 1/21 + 1/22 + 1/23 + 1/24 + .... + 1/80 không phải là một số tự nhiên.
Giúp mình câu này đi, mình cần gấp lắm, ai đúng mình k cho.
Chứng minh: S=\(\frac{1}{21}\) +\(\frac{1}{22}\)+\(\frac{1}{23}\)+\(\frac{1}{24}\)+......+\(\frac{1}{80}\)không phải là một số tự nhiên
Chứng minh S : 1/21+1/22+1/23+...+1/80 không phải là số nguyên
Giải
Đặt A=(1/21+1/22+...+1/40)+(1/41+...+1/80)
→A>20/40+40/80
A=(1/21+1/22+...+1/40)+(1/41+...+1/80)
→A<20/20+40/40
→A<2 (2)
Từ (1),(2)→1<A<2
→A không là số tự nhiên
Đặt A=(1/21+1/22+...+1/40)+(1/41+...+1/80)
→A>20/40+40/80
A=(1/21+1/22+...+1/40)+(1/41+...+1/80)
→A<20/20+40/40
→A<2 (2)
Từ (1),(2)→1<A<2
→A không là số tự nhiên
Cho biểu thức: C=-1/21+(-1/22)+(-1/23)+...+(-1/79)+(-1/80) Chứng minh rằng : C không phải là số nguyên
Cho biểu thức P = 1/20 + 1/21 + 1/22 +...+1/79
a/Chứng minh P > 13/12
b/Chứng minh P không phải là số tự nhiên
Câu 1 : Trên cùng một nửa mặt phẳng bờ chứa tia Ox, vẽ 2 tia Oy và Oz sao cho góc xOy = 70 độ, góc xOz = 140 độ
a, Tinh góc yOz.
b, Tia Oy có là tia phân giác của góc xOz không ? Vì sao ?
c, Vẽ tia Ox' là tia đối của tia Ox. Tính góc x'Oz.
Câu 2 : Chứng minh : S = 1/21 + 1/22 + 1/23 + 1/24 + ..... + 1/80 không phải là một số tự nhiên.
( Giúp mình với, mình cần gấp )
a)Vì Oy,Oz cùng thuộc 1 nửa mặt phẳng tia Ox
&góc xOy<góc xOz(70 độ<140 độ)
Nên Oy nằm giữa 2 tia Ox và Oz
Tcó:góc xOy + góc yOz=góc xOz
Tsố:70 độ + góc yOz=140 độ
góc yOz=140 độ - 70 độ=70 độ
b)+)Vì Ot là tia phân giác của góc yOz
Nên góc yOt=góc tOz=góc yOz×1/2=70 độ×1/2=35 độ
+)Vì Ot,Ox cùng thuộc 1 nửa mặt phẳng bờ Oz
& góc zOt<góc zOx(35 độ<140 độ)
Nên Ot nằm giữa 2 tia Ox&Oz
Tcó:góc xOt+góc tOz=góc xOz
Tsố:góc xOt+35 độ=140 độ
góc xOt =140 độ-35 độ=105 độ
bạn giúp mình vẽ hình cho câu 1 đc ko
chứng minh rằng B= 1/5+1/7+1/9+...+1/101 không phải là số tự nhiên
chứng minh rằng A= 1+1/2+1/3+...+1/100 không phải là số tự nhiên
chứng minh rằng C= 1/2+1/3+1/4+...+1/50 không phải là số tự nhiên
Để quy đồng mẫu các phân số trong tổng A = 1/2 + 1/3 + 1/4 + ... + 1/100, ta chọn mẫu chung là tích của 2^6 với các thừa số lẻ nhỏ hơn 100. Gọi k1,k2,... k100 là các thừa số phụ tương ứng, tổng A có dạng: B=(k1+k2+k3+...+k100)/(2^6.3.5.7....99).
Trong 100 phân số của tổng A chỉ có duy nhất phân số 1/64 có mẫu chứa 2^6 nên trong các thừa số phụ k1,k2,...k100 chỉ có k64 (thừa số phụ của 1/64) là số lẻ (bằng 3.5.7....99), còn các thừa số phụ khác đều chẵn (vì chứa ít nhất một thừa số 2). Phân số B có mẫu chia hết cho 2 còn tử không chia hết cho 2, do đó B (tức là A) không thể là số tự nhiên.
Ngoài ra với trường hợp tổng quát, hạng tử cuối là 1/n (n là số tự nhiên), ta chọn mẫu chung là 2^k với các thừa số lẻ không vượt quá n, trong đó k là số lớn nhất mà 2^k <= n. Chỉ có thừa số phụ của 1/2^k là số lẻ còn các thừa số phụ khác đều chẵn.
Còn cách giải khác nữa cùng trong sách Nâng cao và phát triển Toán 6 tập hai bạn có thể tham khảo thêm nhé. Chúc bạn học giỏi!
Xét 1/2 + 1/3 + 1/4
1/2 + 1/4 = (2+4)/(2.4) = 2.3/[(3-1)(3+1)] = 2.3/(3^2 - 1) > 2.3/3^2 = 2/3 = 2.(1/3)
---> 1/2+1/3+1/4 > 3.(1/3) = 1 (1)
Lại xét 1/5 + 1/6 + ... + 1/9 + ... + 1/13
1/8+1/10 = (8+10)/(8.10) = 2.9/(9^2 - 1) > 2.9/9^2 = 2/9 = 2.(1/9)
Tương tự cm được 1/7+1/11 > 2.(1/9) ; 1/6+1/12 > 2.1/9; ...; 1/5+1/13 > 2.1/9
---> 1/5+1/6+ ... + 1/13 > 9.(1/9) = 1 (2)
Tiếp tục xài chiêu đó, cm được 1/14+1/15+ ... + 1/38 > 25.(1/25) = 1 (3)
(1),(2),(3) ---> a > 3 (*)
Mặt khác
1/2 + 1/3 + 1/6 = 1 (4)
1/4 + 1/5 + 1/20 = 1/2 (5)
1/7 + 1/8 + 1/9 < 3.(1/7) = 3/7 (6)
1/10+1/11+ ...+1/14 < 5.(1/10) = 1/2 (7)
1/15+1/16+ ...+1/19 < 5.(1/15) = 1/3 (8)
1/21+1/22+ ...+1/26 < 6.(1/21) = 2/7 (9)
1/27+1/28+ ...+1/50 < 24.(1/27) = 8/9 (10)
Cộng (4),(5),(6),(7), (8),(9),(10) ---> a < 2 + 5/7 + 11/9 < 2 + 7/9 + 11/9 = 4 (**)
Từ (*) và (**) ---> 3 < c < 4 ---> a ko phải là số tự nhiên.
====================================
Cách khác (tổng quát hơn, trừu tượng hơn)
Quy đồng mẫu số :
Chọn mẫu số chung là M = BCNN(2;3;4;...;50) = k.2^5 = 32k (k là số tự nhiên lẻ)
Đặt T2 = M/2; T3 = M/3; ...; T50 = M/50
---> a = (T2+T3+ ... + T50) / M
Chú ý rằng T2,T3,...,T50 đều chẵn, chỉ riêng T32 = M/32 = k là lẻ, còn M chẵn
---> T2+T3+...T50 lẻ.Số lẻ ko thể là bội của số chẵn ---> c ko phải là số tự nhiên.
M = 1/4+1/8+1/14+1/22+1/32+1/44+1/58+1/74+1/92+1/112
chứng minh M không phải là số tự nhiên
Muốn c/m M ko phải STN, chỉ cần chứng minh x<M<x+1
ý mình là c/m như thế nào cơ? Bạn làm đầy đủ cho mình nhé!