rut gon
A=\(\sqrt{\left(\sqrt{6}-2\sqrt{2}\right)^2}-\sqrt{24-12\sqrt{3}}\)
rut gon \(\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
1> Rut gon
a)\(\sqrt{6-2\sqrt{2}+2\sqrt{3}-2\sqrt{6}}\)
b) \(\left(\sqrt{2}+1\right)\left(\left(\sqrt{2}\right)^2+1\right)\left(\left(\sqrt{2}\right)^4+1\right)\left(\left(\sqrt{2}\right)^8+1\right)\left(\left(\sqrt{2}\right)^{16}+1\right)\)
c)\(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
d) \(\sqrt{3-\frac{4\sqrt{5}}{3}}+\sqrt{3+\frac{4\sqrt{5}}{3}}\)
Rut gon A= \(\dfrac{\sqrt{1-\sqrt{1-x^2}}.\left\{\sqrt{\left(x+1\right)^3}+\sqrt{\left(1-x\right)^3}\right\}}{2-\sqrt{1-x^2}}\)
rut gon bieu thuc
\(\left(3\sqrt{2}+\sqrt{6}\right)\times\sqrt{6-3\sqrt{3}}\)
\(B=5\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}-\sqrt{\frac{5}{2}}\right)^2+\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}-\sqrt{\frac{3}{2}}\right)^2\)
rut gon b
Rut gon:
\(\left(\sqrt{3-\sqrt{5}}\right).\left(\sqrt{10}-\sqrt{2}\right).\left(3+\sqrt{5}\right)\)
Mình rút gọn như sau:
\(\left(\sqrt{3-\sqrt{5}}\right).\left(\sqrt{10}-\sqrt{2}\right).\left(3+\sqrt{5}\right)\)
\(=\sqrt{\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}\right)^2}.\left(3\sqrt{10}+5\sqrt{2}-3\sqrt{2}-\sqrt{10}\right)\)
\(=\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}\right).\left(2\sqrt{10}+2\sqrt{2}\right)\)
\(=10+2\sqrt{5}-2\sqrt{5}-2\)
\(=8\)
(Chúc bạn học giỏi và tíck cho mìk vs nhá!)
\(\left(3+\frac{a-2\sqrt{a}}{\sqrt{a}-2}\right)\left(3-\frac{3a+\sqrt{a}}{3\sqrt{a}+1}\right).Rut\:gon\:bieu\:thuc\:nay\)
IQ vô cực mà , bn tự làm đc cái biểu thức dễ ợt này mà
Rut gon \(\sqrt{\left(\sqrt{3}-2\right)^2}\)a2
\(\sqrt{\left(\sqrt{3}-2\right)^2\cdot a^2}\)
\(=\left|a\cdot\left(2-\sqrt{3}\right)\right|\)
\(=\left(2-\sqrt{3}\right)\cdot\left|a\right|\)
rut gon bieu thuc
A=\(\left(\dfrac{\sqrt{X}+2}{X-9}-\dfrac{\sqrt{X}-2}{X+6\sqrt{X}+9}\right)\left(\sqrt{X}\dfrac{9}{\sqrt{X}}\right)\)
XEM CÓ SAI ĐỀ BÀI KHÔNG, MK RÚT GỌN RA TO LẮM
\(=\dfrac{x+5\sqrt{x}+6-x+5\sqrt{x}-6}{\left(\sqrt{x}+3\right)^2\cdot\left(\sqrt{x}-3\right)}\cdot\dfrac{x-9}{\sqrt{x}}\)
\(=\dfrac{10\sqrt{x}}{\sqrt{x}}\cdot\dfrac{1}{\sqrt{x}+3}=\dfrac{10}{\sqrt{x}+3}\)