Tìm x,y,z biết (3x-5)2006+(y2-1)2008+(x-z)2010=0
tìm các số x,y,z biết
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2010}=0\)
tìm x,y,z thuộc N,biết :
a)A=(3x-5)^2006+(y^2-1)^2008+(x-z)^2100=0
b)B=(2x-1)^2008+(y-2:5)^2008+/x+y-z/=0
Tìm x,y,z biết: (3x-5)2006+(y2-1)2008+(x-z)2100=0
https://olm.vn/hoi-dap/question/925051.html
bn vào link này có bài bạn caamnf đo. mà đề (3x-5)2006+(y2-1)2008+(x-z)2100=0
đề bài là: (3x-5)2006+(y2-1)2008+(x-z)2100=0 nha
Tìm x; y; z:
a) |x - 2| - |2x+3| - x = 0
b) |x - 7| + 2x+5=6
c)(3x-5)2006+(y2-1)2008+(x-z)2010 = 0
d) 2009- |x - 2009| = x
e)(2x-1)2008+(y- \(\frac{2}{5}\))2008+ |x+y - z| =0
Tìm x,y thuộc Z:
a, (x-3)^2+(y+2)^2=0
b,2x+2^x+3=136
c,42-3./y-3/=4.(2042-x)^4
d,/x+5/+(3y-6)^2010=0
e,(2x-4)^2008+(y-4)^2008+/x+y+z/=0
g,(3x-6)^2006+(y^2-1)^2008+(x-z)^2100=0
h,8.2^3x.7^y=56^2x.5^x-1
i, x^3-y^3-z^3=3xyz và x^2=2.(y+z) (x,y,z thuộc N*)
tìm các số x,y,z \(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(3x-5\right)^{2006}=0\\\left(y^2-1\right)^{2008}=0\\\left(x-z\right)^{2100}=0\end{matrix}\right.\Leftrightarrow x=z=\dfrac{5}{3}\)
\(\Rightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)
Từ đề suy ra :
\(\left\{{}\begin{matrix}\left(3x-5\right)^{2006}=0\\\left(y^2-1\right)^{2008}=0\\\left(x-z\right)^{2100}=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3x-5=0\\y^2-1=0\\x-z=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=z=\dfrac{5}{3}\\y=\pm1\end{matrix}\right.\)
tìm các số x, y, z biết
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
Ta có: \(\left(3x-5\right)^{2006}\ge0\)với mọi x
\(\left(y^2-1\right)^{2008}\ge0\)với mọi y
\(\left(x-z\right)^{2100}\ge0\) với mọi x,z
\(\Rightarrow\)\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}\ge0\)với mọi x
Mà \(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
\(\Rightarrow\left(3x-5\right)^{2006}=0;\left(y^2-1\right)^{2008}=0;\left(x-y\right)^{2100}=0\)
Xét:
\(\left(3x-5\right)^{2006}=0\hept{\begin{cases}3x-5=0\\3x=5\\x=\frac{5}{3}\end{cases}}\)
Xét:
\(\left(y^2-1\right)^{2008}=0\hept{\begin{cases}y^2-1=0\\y^2=1\\y=1hoac-1\end{cases}}\)
Xét:
\(\left(x-z\right)^{2100}=0\hept{\begin{cases}x-z=0\\\frac{5}{3}-z=0\\z=\frac{5}{3}\end{cases}}\)
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
\(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=z=\frac{5}{3}\\y=1\end{cases}}\)
Tìm các số nguyên x;y;z biết: (3x-5)2006+(y2-1)2008+(x-z)2100=0
=>3x-5=0 và y2-1=0 và x-z=0
=>x=5/3 và y=-1 hoặc y=1 và z=5/3
Tìm x,y,z biết :
a, ( 3x- 5)2006 + (y2-1)2008 + (x-7)2100 =0
b, x/2=y3=z/4 và x^2 + y^2 + z^2 = 11^6
c, | 3-x| + 3x -1 =0
c) TH1 : x <=3 thì |3 -x| = 3 -x do đó ta đc 3 - x + 3x - 1 =0=> x = -1
TH2 : x > 3 thì |3 -x| = x -3, do đó ta đc : x - 3 + 3x -1 =0 => x = 1
a, Xét (3x-5)^2006; (y^2-1)^2008;9x-7)^2100 lú nào cũng lớn hơn hoặc bằng 0 nên suy ra (3x-5)^2006 +(Y^2-1)^2008+(x-7)^2100 >hoặc bằng 0 . Dể cộng vào bằng 0 thì (3x-5)^2006 =0; (y^2-1)^2008=0; (x-7)^2100=0 suy ra 3x-5=0;Y^2-1=0;'x-7=0
3x=5,x=5/3; y^2=1 ,y=+ - 1;x=7