Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhok Silver Bullet
Xem chi tiết
Mr Lazy
26 tháng 6 2015 lúc 10:32

a) \(2^{4n+1}+3=2.2^{4n}+3=2.16^n+3\)

Do \(16^n\) có tận cùng luôn là 6 nên \(2.16^n\) có tận cùng là 2 => \(2^{4n+1}+3\) có tận cùng là 5 nên chia hết cho 5.

Kynz Zanz
Xem chi tiết
»» Hüỳñh Äñh Phươñg ( ɻɛ...
16 tháng 6 2021 lúc 11:36

a) Chữ số tận cùng của 74n là : ( 7 * 7 * 7 * 7 ) mod 10 = 1

Vậy chữ số tận cùng của 74n - 1 là : ( 7 * 7 * 7 * 7 - 1 ) mod 10 = 0 ( đpcm )

b) Tương tự

Khách vãng lai đã xóa
Xyz OLM
16 tháng 6 2021 lúc 11:43

Ta có 74n - 1 = (74)n - 1 = (...1)n - 1 = (...1) - 1 = (...0)

=> 74n - 1 \(⋮\)5

Ta có 34n + 1 + 2 =34n.3 + 2 = (34)n.3 + 2 = (...1)n.3 + 2 =(...1).3 + 2 =(...3) + 2 = (...5)

=> 34n + 1 + 2 \(⋮\)5

Khách vãng lai đã xóa
Truong Văn Thành Tâm
Xem chi tiết
Nguyễn Hoàng Châu
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 11 2023 lúc 8:46

a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn

b: Đặt \(A=n^3+3n^2-n-3\)

\(=\left(n^3+3n^2\right)-\left(n+3\right)\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

n lẻ nên n=2k+1

=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)

=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)

c: 

loading...

loading...

d: Đặt \(B=n^4-4n^3-4n^2+16n\)

\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)

\(=n^3\left(n-4\right)-4n\left(n-4\right)\)

\(=\left(n-4\right)\left(n^3-4n\right)\)

\(=n\left(n-4\right)\left(n^2-4\right)\)

\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)

n chẵn và n>=4 nên n=2k

B=n(n-4)(n-2)(n+2)

\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)

\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)

Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp

nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)

=>B chia hết cho \(16\cdot24=384\)

Trịnh Khánh Huyền
Xem chi tiết
Lê An Chi
Xem chi tiết
Akai Haruma
6 tháng 7 lúc 0:18

Lời giải:

a. Ta có:

$7^4\equiv 1\pmod 5$

$\Rightarrow 7^{4n}\equiv 1^n\equiv 1\pmod 5$

$\Rightarrow 7^{4n}-1\equiv 0\pmod 5$

Hay $7^{4n}-1\vdots 5$

b.

$2^4\equiv 1\pmod 5$

$\Rightarrow 2^{4n+1}=2.2^{4n}\equiv 2.1^n\equiv 2\pmod 5$

$\Rightarrow 2^{4n+1}+3\equiv 2+3\equiv 5\equiv 0\pmod 5$

$\Rightarrow 2^{4n+1}+3\vdots 5$

CoRoI
Xem chi tiết
Nguyễn Thị Giang
27 tháng 3 2016 lúc 17:42

1,

A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
 A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)

onepiece
Xem chi tiết
TFboys_Lê Phương Thảo
29 tháng 6 2016 lúc 8:13

4n2(n+2)+4n(n+2)

=4n3+8n2+4n2+8n

=4n2+12n2+8n

=4n(n+3n+2)

Vì :24 chia hết cho 4 

\(\Leftrightarrow4n\left(n+3n+2\right)\)

\(\Rightarrowđpcm\)

Nghĩa Nguyễn
Xem chi tiết
Huỳnh Quang Sang
13 tháng 9 2019 lúc 15:54

Ta phân tích biểu thức đã cho ra nhân tử :

\(A=n^4-4n^3-4n^2+16n\)

\(=\left[n^4-4n^3\right]-\left[4n^2-16n\right]=n^3(n-4)-4n(n-4)\)

\(=n(n-4)\left[n^2-4\right]=n(n-2)(n+2)(n-4)\)

Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : \(A=(2k+2)(2k)(2k+4)(2k-2)\)

\(=16k(k-1)(k+1)(k+2)=16(k-1)(k)(k+1)(k+2)\)

Ta nhận thấy \((k-1)(k)(k+1)(k+2)\)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24

Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm

alibaba nguyễn
30 tháng 11 2016 lúc 8:26

Mình làm gọn 1 xíu nhé

Ta có

\(x^4-4x^3-4x^2+16x=\left(x-4\right)\left(x-2\right)x\left(x+2\right)\)

Đây là tích của 4 số chẵn liên tiếp nên sẽ có 2 số chia hết cho 2, 1số chia hết cho 4, 1 số chia hết cho 8. Nên tích này chia hết cho 27.

Trong 3 số chẵn liên tiếp sẽ có 1 số chia hết cho 3

Vì 3 và 27 là nguyên tố cùng nhau nên

Tích chia hết cho 3.27 = 384

huynh nguyen thanh binh
2 tháng 9 2017 lúc 8:54

384 Đúng 100%