phân tích các đa thức sau thành nhân tử :
\(a\left(b^2-c^2\right)+b\left(c^2-a^2\right)c\left(a^2-b^2\right)\)
phân tích đa thức sau thành nhân tử
\(a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c\left(a+b\right)^2\left(a-b\right)\)
\(a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c\left(a+b\right)^2\left(a-b\right)\)
phân tích đa thức đa thức thành nhân tử
Phân tích đa thức thành nhân tử: \(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
\(=\left(a+b\right)\left(a^2-b^2\right)-\left(b+c\right)\left[c^2-a^2+a^2-b^2\right]+\left(c+a\right)\left(c^2-a^2\right)\)
\(=\left(a+b\right)\left(a^2-b^2\right)-\left(b+c\right)\left(c^2-a^2\right)-\left(b+c\right)\left(a^2-b^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
\(=\left(a^2-b^2\right)\left(a+b-b-c\right)+\left(c^2-a^2\right)\left(c+a-b-c\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(a-c\right)+\left(c-a\right)\left(c+a\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(a+b-c-a\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)
Chúc bạn học tốt.
Phân tích đa thức sau thành nhân tử:
\(M=a\left(b+c-a\right)^2+b\left(c+a-b\right)^2+c\left(a+b-c\right)^2+\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)
Phân tích đa thức thành nhân tử \(a\left(b+c\right)\left(b^2-c^2\right)+b\left(c+a\right)\left(c^2-a^2\right)+c\left(a+b\right)\left(a^2-b^2\right)\)
phân tích đa thức thành nhân tử
\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
→(a+b)(a2-b2) +(b+c)(b2-a2) -(c2-a2)(b+c) +(c+a)(c2-a2)
↔(a2-b2)(a+b-b-c)-(c2-a2)(b+c-c-a)
↔(a-c)(a2-b2)-(c2-a2)(b-a)
↔(a-c)((a2-b2-(a+c)(b-a))
↔(a-c)(a-b)(a+b+b-a)
↔2b(a-c)(a-b)
phân tích đa thức thành nhân tử
\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-b^2\right)\)
\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
\(=a^3-ab^2+a^2b-b^3+b^3-bc^2+b^2c-c^3+c^3-a^2c+ac^2-a^3\)
\(=-ab^2+a^2b-bc^2+b^2c-a^2c+ac^2\)
\(=\left(a^2b-ab^2\right)+\left(ac^2-bc^2\right)-\left(a^2c-b^2c\right)\)
\(=ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a-b\right)\left(a+b\right)\)
\(=\left(a-b\right)\left(ab+c^2-ac-bc\right)\)
\(=\left(a-b\right)\left[\left(ab-ac\right)+\left(c^2-bc\right)\right]\)
\(=\left(a-b\right)\left[a\left(b-c\right)+c\left(c-b\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
Phân tích đa thức sau thành nhân tử:
1) (b-c)(a^3-b^3)-(a-b)(b^3-c^3)
2) \(\left(b-c\right)\left[a\left(b+c\right)^2-b\left(c+a\right)^2\right]-\left(a-b\right)\left[b\left(c+a\right)^2+c\left(a+b\right)^2\right]\)
1) \(\left(a-b\right)\left(c-a\right)\left(c-b\right)\left(c+b+a\right)\)
Phân tích đa thức thành nhân tử:
\(a.\left(b+c\right)\left(b^2-c^2\right)+b.\left(a+c\right)\left(a^2-c^2\right)+c.\left(a+b\right)\left(a^2-b^2\right)\)
Phân tích đa thức thành nhân tử
\(a\left(b+c\right)\left(b^2-c^2\right)+b\left(c+a\right)\left(c^2-a^2\right)+c\left(a+b\right)\left(a^2-b^2\right)\)