→(a+b)(a2-b2) +(b+c)(b2-a2) -(c2-a2)(b+c) +(c+a)(c2-a2)
↔(a2-b2)(a+b-b-c)-(c2-a2)(b+c-c-a)
↔(a-c)(a2-b2)-(c2-a2)(b-a)
↔(a-c)((a2-b2-(a+c)(b-a))
↔(a-c)(a-b)(a+b+b-a)
↔2b(a-c)(a-b)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
→(a+b)(a2-b2) +(b+c)(b2-a2) -(c2-a2)(b+c) +(c+a)(c2-a2)
↔(a2-b2)(a+b-b-c)-(c2-a2)(b+c-c-a)
↔(a-c)(a2-b2)-(c2-a2)(b-a)
↔(a-c)((a2-b2-(a+c)(b-a))
↔(a-c)(a-b)(a+b+b-a)
↔2b(a-c)(a-b)
phân tích đa thức thành nhân tử
\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-b^2\right)\)
phân tích đa thức thành nhân tử :
a. \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
b.\(8\left(x+y+z\right)^3-\left(x+y\right)^3-\left(y+z\right)^3-\left(x+z\right)^3\)
Chứng minh rằng với mọi a,b,c thì :
\(2\left(1+abc\right)+\sqrt{2\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\ge\left(1+a\right)\left(1+b\right)\left(1+c\right)\)
1/ Tìm các số thực không âm a và b thỏa mãn:
\(\left(a^2+b+\frac{3}{4}\right).\left(b^2+a+\frac{3}{4}\right)=\left(2a+\frac{1}{2}\right)\left(2b+\frac{1}{2}\right)\)
2/ Cho a, b là các số thực khác 0. Biết rằng phương trình \(a\left(x-a\right)^2+b\left(x-b\right)^2=0\) có nghiệm duy nhất. Chứng minh \(\left|a\right|=\left|b\right|\)
Chứng minh rằng \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)với mọi a,b,c là số thực
Chứng minh rằng với mọi a,b,c dương thì :
\(\frac{a^2+b^2+c^2}{ab+bc+ac}+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge2\)
Cho 3 số dương a;b;c. CMR:
\(\frac{4a^2+\left(b-c\right)^2}{2a^2+b^2+c^2}+\frac{4b^2+\left(c-a\right)^2}{2b^2+c^2+a^2}+\frac{4c^2+\left(a-b\right)^2}{2c^2+a^2+b^2}\ge3\)
rút gọn \(\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
rút gọn
\(\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)