Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
phan thị minh anh

phân tích đa thức thành nhân tử : 

a. \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

b.\(8\left(x+y+z\right)^3-\left(x+y\right)^3-\left(y+z\right)^3-\left(x+z\right)^3\)

Nguyễn Lê Phước Thịnh
31 tháng 1 2022 lúc 21:09

a: \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left[\left(a+b+c\right)^3-a^3\right]-\left(b^3+c^3\right)\)

\(=\left(a+b+c-a\right)\left[\left(a+b+c\right)^2+a\left(a+b+c\right)+a^2\right]-\left(b+c\right)\left(b^2-bc+c^2\right)\)

\(=\left(b+c\right)\left[a^2+b^2+c^2+a^2+a^2+2ab+2bc+2ac+ab+ac-b^2+bc-c^2\right]\)

\(=\left(b+c\right)\left(3a^2+3ab+3bc+3ac\right)\)

\(=3\left(b+c\right)\left(a+b\right)\left(a+c\right)\)

b: \(=\left(2x+2y+2z\right)^3-\left(x+y\right)^3-\left[\left(y+z\right)^3+\left(x+z\right)^3\right]\)

\(=\left(x+y+2z\right)\left[\left(2x+2y+2z\right)^2+2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\right]-\left(x+y+2z\right)\left[\left(y+z\right)^2-\left(y+z\right)\left(x+z\right)+\left(x+z\right)^2\right]\)

\(=3\left(x+y+2z\right)\left(x+z+2y\right)\left(y+z+2x\right)\)


Các câu hỏi tương tự
Đặng Minh Triều
Xem chi tiết
Phan Quốc Vượng
Xem chi tiết
Sida
Xem chi tiết
phan thị minh anh
Xem chi tiết
phan thị minh anh
Xem chi tiết
Tung Nguyễn
Xem chi tiết
Tung Nguyễn
Xem chi tiết
le vi dai
Xem chi tiết
Trịnh Hà My
Xem chi tiết