Cho ba số dương x,y,z thỏa mãn điều kiện xy+yz+xz=1
Tính giá trị của biểu thức A
A= x\(\sqrt{\frac{\left(1+y^2\right)\left(y^2+z^2\right)}{1+x^2}}+\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+x^2}}\)
cho ba số x, y, z thỏa mãn:
xy + yz + zx +1
Tính:
\(S=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
cho x,y,z>0 thỏa mãn x+y+z+\(\sqrt{xyz}\)=4. Tính giá trị biểu thức:
\(A=\sqrt{x\left(4-y\right)\left(4-z\right)}+\sqrt{y\left(4-z\right)\left(4-x\right)}+\sqrt{z\left(4-x\right)\left(4-y\right)}-\sqrt{xyz}\)
Cho 3 số dương x,y,z thỏa mãn điều kiện xy+yz+xz=2010.CMR: giá trị của biểu thứ sau k phụ tuộc vào biến x;y;z
P=\(x\sqrt{\frac{\left(2010+y^2\right)\left(2010+z^2\right)}{2010+x^2}}\)+ \(y\sqrt{\frac{\left(2010+z^2\right)\left(2010+x^2\right)}{2010+y^2}}\)+\(z\sqrt{\frac{\left(2010+x^2\right)\left(2010+y^2\right)}{2010+z^2}}\)
giải phương trình
a. \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}=4-2x\)
b.\(\sqrt{x-2010}+\sqrt{y-2011}+\sqrt{x+2012}=\frac{1}{2}\left(x+y+z\right)-300\)
a, cho 2 số dương x,y thỏa mãn x+y=1
tìm min của \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
b, cho x,y,z là các số dương thỏa mãn : \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\)
cmr : \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
Tim x,y,z :
1)\(\left(2\sqrt{x}-3\right).\left(2+\sqrt{x}\right)+6=0\)
2)\(\sqrt{x-1+2\sqrt{x-2}}+\sqrt{x-1-2\sqrt{x-2}}=0\)
3)\(\sqrt{x^2-4}-2\sqrt{x-2}=0\)
4)\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}.\left(x+y+z\right)\)
5) xy =\(x\sqrt{y-1}+y\sqrt{x-1}\)
6)\(x\sqrt{y-1}+2y\sqrt{x-1}=\frac{3xy}{2}\)
Cho x, y, z > 0. Cmr: \(\left(xyz+1\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\ge x+y+z+6\)
cho 3 số dương x,y,z thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
cmr : \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)