a) ta thấy : \(\left(2x-y\right)^2>=0;\left(y-2\right)^2>=0;\sqrt{x+y+z}>=0\)
mà \(\left(2x-y\right)^2+\left(y-2\right)^2+\sqrt{x+y+z}=0\)
=> \(\left(2x-y\right)^2=0\)
\(\left(y-2\right)^2=0\)
\(\sqrt{x+y+z}=0\)
=> y=2;x=1;z=-3
b) ta có :
\(x+y+z+4-2\sqrt{x-2}-4\sqrt{y-3}-6\sqrt{z-5}=0\)
=> \(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)
<=> \(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
=> \(\left(\sqrt{x-2}-1\right)^2=0;\left(\sqrt{y-3}-2\right)^2=0;\left(\sqrt{z-5}-3\right)^2=0\)
=> x=3;y=7;z=14