Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàn Vũ Trọng
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 3 2021 lúc 20:04

1) Xét (O) có 

ΔKAB nội tiếp đường tròn(K,A,B\(\in\)(O))

AB là đường kính

Do đó: ΔKAB vuông tại K(Định lí)

\(\Leftrightarrow\widehat{AKB}=90^0\)

hay \(\widehat{HKB}=90^0\)

Xét tứ giác BKHC có 

\(\widehat{HKB}\) và \(\widehat{HCB}\) là hai góc đối

\(\widehat{HKB}+\widehat{HCB}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: BKHC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

hay B,K,H,C cùng thuộc một đường tròn(đpcm)

Cô Hoàng Huyền
Xem chi tiết
Phạm Đoan Trang
14 tháng 5 2021 lúc 8:33

   Ta có: góc AKP = 90độ ( Góc nội tiếp chắn nửa đường tròn)

Mà AK giao MN tại H =) Góc HKP = 90độ (1)

  Lại có: MC vuông góc AB =) Góc HCB = 90độ (2)

Từ (1) và (2) =) góc HKP + góc HCP = 180độ

Mà 2 góc đối nhau

=) Tứ giác BCHK nội tiếp

Khách vãng lai đã xóa
Nguyễn Thế Hải
14 tháng 5 2021 lúc 9:54

undefined

Khách vãng lai đã xóa
06-Đinh Mạnh Hòa
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 5 2023 lúc 12:40

a: góc AKB=1/2*180=90 độ

góc HCB+góc HKB=180 độ

=>BKHC nội tiếp

b: Xét ΔACH vuông tại C và ΔAKB vuông tại K có

góc CAH chug

=>ΔACH đồng dạng với ΔAKB

=>AC/AK=AH/AB

=>AK*AH=AC*AB=1/2R*2R=R^2

Nguyễn Trung Kiên
Xem chi tiết
Tư Ngâm
Xem chi tiết
Le Le Thu
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 7 2023 lúc 9:09

a: góc AKB=1/2*sđ cung AB=90 độ

góc HCB+góc HKB=180 độ

=>HCBK nội tiếp

b: Xét ΔACH vuông tại C và ΔAKB vuông tại K có

góc CAH chung

=>ΔACH đồng dạng với ΔAKB

=>AC/AK=AH/AB

=>AK*AH=AB*AC=2R*1/2R=R^2

Hoàng Minh Quân
Xem chi tiết
Kajini Majin
Xem chi tiết
Bùi Quỳnh Nga
Xem chi tiết
Bình Vũ
16 tháng 4 2018 lúc 19:43

a.

Góc AKB là góc nội tiếp chắn nửa (O) nên ∠AKB=90o∠AKB=90o

Khi này dễ dàng có đpcm

b.

Do C là trung điểm OA nên AC=OA2=R2AC=OA2=R2

Tứ giác BCHK nội tiếp nên chứng minh được △AHC∼△ABK△AHC∼△ABK

Từ đó: ACAK=AHAB⇒AH.AK=AC.AB=R2.2R=R2ACAK=AHAB⇒AH.AK=AC.AB=R2.2R=R2

c.

Lấy điểm E trên tia đối của BK sao cho KE=KM=KI

Chứng minh được tam giác AMO đều (có 3 cạnh = nhau) khi đó ∠MAB=60o∠MAB=60o

Dễ dàng chứng minh được tứ giác ABKM nội tiếp nên ∠MKE=∠MAB=60o∠MKE=∠MAB=60o

khi đó tam giác MKE đều nên ME = MK(1)

Có ∠CMB=∠MAB=6oo∠CMB=∠MAB=6oo (hai góc cùng phụ với góc AMC) nên

∠MNK=∠BME(2)∠MNK=∠BME(2)

Góc CMB=60oCMB=60o nên MB=2MCMB=2MC mà MN=2MCMN=2MC nên MN=MB(3)MN=MB(3)

Từ (1),(2) và (3) nên △NMK=△BME△NMK=△BME nên NK=BENK=BE hay NI+IK=BK+KINI+IK=BK+KI từ đó có đpcm

Hình gửi kèm

untitled.JPG
nguyễn phương thảo
25 tháng 7 2020 lúc 21:13

cần gắp ko bn êi

Khách vãng lai đã xóa