Tìm số nguyên \(a\), biết :
a) \(|a| =7\)
b) \(\left|a+6\right|=0\)
Tìm số nguyên a biết \(\left(a^2-7\right)\left(a^2-10\right)\left(a^2-25\right)< 0\)
Ta có a2 - 25 < a2 - 10 < a2 - 7. Để (a2 - 7)(a2 - 10)(a2 - 25) < 0 thì ta có 2 trường hợp :
TH1 : 1 thừa số âm và 2 thừa số dương
=> a2 - 25 < 0 < a2 - 10 < a2 - 7\(\Rightarrow\hept{\begin{cases}a^2-25< 0\\a^2-10>0\end{cases}\Rightarrow\hept{\begin{cases}a^2< 25\\a^2>10\end{cases}}}\)=> a2 = 16 => a2 = -4 ; 4
TH2 : 3 thừa số đều âm
=> a2 - 25 < a2 - 10 < a2 - 7 < 0 => a2 - 7 < 0 => a2 < 7 =>\(a^2\in\) {0 ; 1 ; 4} =>\(a\in\){0 ; -1 ; 1 ; -2 ; 2}
Vậy\(a\in\){-4 ; -2 ; -1 ; 0 ; 1 ; 2 ; 4}
Xét \(a^2-25\ge0\) \(\Rightarrow\hept{\begin{cases}a^2-7>0\\a^2-10>0\end{cases}}\)
\(\Rightarrow\left(a^2-7\right)\left(a^2-10\right)\left(a^2-25\right)\ge0\left(l\right)\)
\(\Rightarrow a^2< 25\)
\(\Rightarrow a^2=\left(0,1,4,9,16\right)\)
Thế \(a^2=0\) \(\Rightarrow\left(a^2-7\right)\left(a^2-10\right)\left(a^2-25\right)=\left(-7\right)\left(-10\right)\left(-25\right)< 0\left(nhan\right)\)
Tương tự ta tìm được các giá trị a2 thỏa đề bài là: 0, 1, 4, 16
\(\Rightarrow a=\left(-4,-2,-1,0,1,2,4\right)\)
Đơn giản
Để a ^ 2 - 7 < 0 ; a ^ 2 - 10 < 0 ; a ^ 2 - 25 < 0 thì a ^ 2 < 7 hoặc 10 < a ^ 2 < 25
Suy ra a = ( 1 ; -1 ; 2 ; -2 ; 4 ; -4 )
Nhớ cho mình nha
Cho phân số A=\(\frac{6}{\left(n+2\right)\left(n-1\right)},n\in Z\)
a) Với giá trị nào của số nguyên n thì phân số A ko tồn tại
b) Viết tập hợp các số nguyên n để phân số A tồn tại
c) Tìm phân số A biết n=-7;n=5;n=0;n=1
1)So sánh:(-1).(-3).(-5)...(-95).(-97).(-101) với (-999).(-1001)
2)Tính giá trị biểu thức:
a)A=\(5a^3b^8\)với a= -1,b=1
b)B=\(-9a^4b^2\)với a=-1,b=2
c)C=\(\left(-3\right)^2.\left(-2\right)^3.\left(-1\right)^{2n}.\left(-1\right)^{2m+1}\)với m,n thuộc N*
3)Tìm số nguyên x,biết:
a) (-1005).(x+2)=0
b)(8+x).(6-|x|)=0
c)8x.(5-x)=0
d)|8-2x|.(3+2x)=0
e)\(x^2-5x=0\)
f)\(x^3+x=0\)
g)\(\left(2x+1\right)^2=25\)
h)\(\left(1-3x\right)^3=64\)
i)\(\left(4-x\right)^3=-81\)
4)Tìm số nguyên x,biết:
a)x.(x-2)>0
b)x.(x+2)<0
c)(x-7).(x+3)<0
5)Tìm số nguyên n,biết:
a)15+14+13+12+...+n=0
b)n+(n+1)+(n+2)+(n+3)+...+35=0
c)(n+2)+(n+4)+(n+6)+...+(n+36)=0
6)Tìm các số nguyên x và y,biết:
a)(x-3).(2y+7)=7
b)(x+1).(y+2)=-5 và x<y
MỌI NGƯỜI GIÚP MÌNH NHÉ!CHIỀU MÌNH ĐI HỌC RỒI!
LƯU Ý:CÁC BẠN CÓ THỂ LÀM NHỮNG CÂU CÁC BẠN CÓ THỂ LÀM NHÉ!MÌNH KHÔNG BẮT BUỘC ĐÂU!
a) Tìm hai số tự nhiên a,b biết BCNN(a,b) + ƯCLN(a,b) = 15
b) Tìm x nguyên thỏa mãn \(\left|x+1\right|+\left|x-2\right|+\left|x+7\right|=5x-10\)
c) Chứng minh rằng bình phương của một số nguyên tố khác 2 và 3 khi chia cho 12 đều dư 1
d) Tìm số nguyên n sao cho \(n^2+5n+9\) là bội của n+3
Bạn nào giúp được câu nào thì giúp mk nha
d) Ta có: \(n^2+5n+9⋮n+3\)
\(\Leftrightarrow n^2+3n+2n+6+3⋮n+3\)
\(\Leftrightarrow n\left(n+3\right)+2\left(n+3\right)+3⋮n+3\)
mà \(n\left(n+3\right)+2\left(n+3\right)⋮n+3\)
nên \(3⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(3\right)\)
\(\Leftrightarrow n+3\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{-2;-4;0;-6\right\}\)
Vậy: \(n\in\left\{-2;-4;0;-6\right\}\)
d) Ta có: n2+5n+9⋮n+3n2+5n+9⋮n+3
⇔n2+3n+2n+6+3⋮n+3⇔n2+3n+2n+6+3⋮n+3
⇔n(n+3)+2(n+3)+3⋮n+3⇔n(n+3)+2(n+3)+3⋮n+3
mà n(n+3)+2(n+3)⋮n+3n(n+3)+2(n+3)⋮n+3
nên 3⋮n+33⋮n+3
⇔n+3∈Ư(3)⇔n+3∈Ư(3)
⇔n+3∈{1;−1;3;−3}
`b)` - Ta thấy : `|x+1|+|x-2|+|x+7|>=0`
`-> 5x-10>=0`
`-> 5x>=10`
`-> x>=2`
`-> |x+1|=x+1;|x-2|=x-2;|x+7|=x+7`
- Vậy ta có :
`(x+1)+(x-2)+(x+7)=5x-10`
`<=> x+1+x-2+x+7=5x-10`
`<=> 3x+6=5x-10`
`<=> 3x-5x=-10-6`
`<=> -2x=-16`
`<=> x=8`
Tìm tất cả các bộ số nguyên (a,b) thỏa mãn \(3\left(a^2+b^2\right)-7\left(a+b\right)+4=0\)
3b2+3a2-7a-7b+4=0
=>a(3a-7)+b(3b-7)=0
Ta có:
12(3a2 + 3b2 - 7a - 7b + 4) = 0
<=> (6a - 7)2 + (6b - 7)2 = 50
<=> (6a - 7, 6b - 7) = (1, 49; 49, 1; 25, 25)
Cách 2: dễ dàng thấy a, b ≥ 0
Ta có:
Xét a, b ≥ 3
=> 3(a2 + b2) - 7(a + b) + 4 ≥ 9(a + b) - 7(a + b) + 4
= 2(a + b) + 4 > 0
Xét 0 ≤ a ≤ 2; 0 ≤ b tìm được a, b.
Tìm tất cả các bộ số nguyên (a,b) thỏa mãn \(3\left(a^2+b^2\right)-7\left(a+b\right)+4=0\)
Cho E = { x∈R | 1 ≤ x < 7}
A= { x∈R | (x2-9)(x2 – 5x – 6) = 0 }
B = { x∈R | x là số nguyên tố ≤ 5}
a) Chứng minh rằng B ⊂ E
b) Tìm \(C_EB;C_E\left(A\cap B\right)\)
tìm số nguyên a
\(\left(a^2-1\right)\left(a^2-4\right)\left(a^2-7\right)\left(a^2-10\right)< 0\)
tích của bốn số a2 - 10, a2 - 7, a2 - 4, a2 - 1 là số âm nên phải có 1 hoặc 3 số âm.
Ta có : a2 - 10 < a2 - 7 < a2 - 4 < a2 - 1.
Xét hai trường hợp :
+) có một số âm, ba số dương :
a2 - 10 < 0 < a2 - 7 \(\Rightarrow\)7 < a2 < 10 \(\Rightarrow\)a2 = 9 \(\Rightarrow\)a = \(\mp3\)
+) có ba số âm, một số dương :
a2 - 4 < 0 < a2 - 1 \(\Rightarrow\)1 < a2 < 4 \(\Rightarrow\)không có giá trị a nguyên nào thỏa mãn trường hợp trên
Vậy a = \(\mp3\)
Tìm các số nguyên x,y sao cho :
a)\(\left(x-2\right)^2+\left(y+1\right)^2=0\)
b)\(/2x-6/+/y+7/=0\)
ta có \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(y+1\right)^2\ge0\end{cases}}\)
mà \(\left(x-2\right)^2+\left(y+1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\y+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
b)
ta có \(\hept{\begin{cases}\left|2x-6\right|\ge0\\\left|y+7\right|\ge0\end{cases}}\)
mà \(\left|2x-6\right|+\left|y+7\right|=0\)
\(\Rightarrow\hept{\begin{cases}2x-6=0\\y+7=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=-7\end{cases}}}\)