Rút gọn \(A=\frac{2}{\sqrt{y+}\sqrt{x}}+\frac{1}{\sqrt{x}-\sqrt{y}}+\frac{3\sqrt{x}}{y-x}\)
bài 1: rút gọn:
C=\(\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{x\sqrt{x}-y\sqrt{y}}{y-x}\right):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
bài 2 :rút gọn
E=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
35Cho biểu thức
P=\(\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{xy^3}+\sqrt{x^3y}}\)
a) Rút gọn P
b)Cho xy=16 . Tìm Min P
34 Cho biểu thức
P=\(\frac{x}{\sqrt{xy}-2y}-\frac{2\sqrt{x}}{x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}}-\frac{1-x}{1-\sqrt{x}}\)
a) Rút gọn P
b)Tính P biết 2x^2+y^2-4x-2xy+4=0
Rút gọn:
\(A=\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left[\left(\frac{1}{x}+\frac{1}{y}\right).\frac{1}{x+y+2\sqrt{xy}}+\frac{2}{\left(\sqrt{x}+\sqrt{y}\right)^3}.\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\right]\)
\(x=\sqrt{2-\sqrt{3}};y=\sqrt{2+\sqrt{3}}\)
Cho biểu thức:
\(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
a, Rút gọn A
b, Biết xy=6. Tìm giá trị của x,y để A có GTNN
Cho biểu thức P=\([\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
a) Rút gọn P
b) cho xy=16. Xác định x,y để P có GTNN
Cho x, y là các số thực dương. Rút gọn các biểu thức sau:
a) \(A = \frac{{{x^{\frac{1}{3}}}\sqrt y + {y^{\frac{1}{3}}}\sqrt x }}{{\sqrt[6]{x} + \sqrt[6]{y}}};\)
b) \(B = {\left( {\frac{{{x^{\sqrt 3 }}}}{{{y^{\sqrt 3 - 1}}}}} \right)^{\sqrt 3 + 1}}.\frac{{{x^{ - \sqrt 3 - 1}}}}{{{y^{ - 2}}}}.\)
a: \(A=\dfrac{x^{\dfrac{1}{3}}\cdot y^{\dfrac{1}{2}}+y^{\dfrac{1}{3}}\cdot x^{\dfrac{1}{2}}}{x^{\dfrac{1}{6}}+y^{\dfrac{1}{6}}}=\dfrac{x^{\dfrac{1}{3}}\cdot y^{\dfrac{1}{3}}\left(x^{\dfrac{1}{6}}+y^{\dfrac{1}{6}}\right)}{x^{\dfrac{1}{6}}+y^{\dfrac{1}{6}}}=x^{\dfrac{1}{3}}\cdot y^{\dfrac{1}{3}}=\left(xy\right)^{\dfrac{1}{3}}\)
b: \(B=\dfrac{x^{3+\sqrt{3}}}{y^2}\cdot\dfrac{x^{-\sqrt{3}-1}}{y^{-2}}=\dfrac{x^{3+\sqrt{3}-\sqrt{3}-1}}{y^{2-2}}=x^2\)
Bài 3:
B= \(\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\times\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]\div\frac{\sqrt{x}^3+y\sqrt{x}+x\sqrt{y}+\sqrt{y}^3}{\sqrt{x^3y}+\sqrt{xy^3}}\)
a)Tìm ĐKXĐ
b)Rút gọn
c)Tìm x,y để B min
\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\left(\frac{1}{x}+\frac{1}{y}\right).\frac{1}{x+y+2\sqrt{xy}}+\frac{2}{\left(\sqrt{x}+\sqrt{y}\right)^3}.\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\right)\)rút gọn biết x=2-\(\sqrt{3}\)và y =\(2+\sqrt{3}\)
Ta có :
Đặt A=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\left(\frac{x+y}{xy}\right).\frac{1}{\left(\sqrt{x}+\sqrt{y}\right)^2}+\frac{2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}.\left(\sqrt{x}+\sqrt{y}\right)^3}\right)\)
=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\frac{x+y}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}+\frac{2\sqrt{xy}}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}\right)\)
=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}\right)\)
=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\frac{1}{xy}\)
=\(\frac{xy.\left(\sqrt{x}-\sqrt{y}\right)}{xy\sqrt{xy}}\)
=\(\frac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}\)
=\(\frac{\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}}{\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}\)
=\(\frac{\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}}{\sqrt{4-3}}\)
=\(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)
=> \(A^2=\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)^2\)
=\(2-\sqrt{3}-2\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+2+\sqrt{3}\)
=\(4-2\sqrt{4-3}\)
=\(4-2\)
=\(2\)
=>\(A=\sqrt{2}\)
Cho C = \(\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]\left[\frac{x\sqrt{x}+y\sqrt{z}+x\sqrt{y}+y\sqrt{y}}{\sqrt{x^3y}+\sqrt{xy^3}}\right]...\)
a) Rút gọn C
b) Tìm x,y biết xy= \(\frac{1}{16}\)và C = 5
Thưa....bạn.....mình....chịu.....
Ê bạn... thiên vị ak.
Sao ko đợi người nào giỏi trả lời