Tìm số nguyên a sao cho
a) -3/4<a/12<-5/9 b)-5/6<a/5<1/2
a) Tìm các số nguyên dương a sao cho a = 10 ; a = 1 ; a = 4 ; a = − 2
b) Tìm các số nguyên âm a sao cho a = 5 ; a = 1 ; a = − 4 ; a = − 3
c) Tìm các số nguyên a sao cho a = 5 ; a = 1 ; a = − 4 ; a = − 3
A=\(\dfrac{4}{x-3}\)
a/ tìm số nguyên x sao cho A có giá trị là số chính phương
b/tìm số nguyên x sao cho A có giá trị là số nguyên tố
b)
Để A là số nguyên tố thì \(\dfrac{4}{x-3}\) phải là số nguyên tố có một nghiệm bằng 1 và bằng chính nó
\(x-3\inƯ_{\left(4\right)}=\left\{\pm1;\pm2;\pm4\right\}\). Mặt khác ta thấy chỉ có 2 là số nguyên tố \(\Rightarrow x-3=2\Leftrightarrow x=5\)
Giải:
a) Để \(A=\dfrac{4}{x-3}\) là số chính phương thì A là Ư chính phương của 4
\(\Rightarrow\left(x-3\right)\inƯ\left(4\right)=\left\{1;4\right\}\)
Ta có bảng giá trị:
x-3 | 1 | 4 |
x | 4 | 7 |
Vậy \(x\in\left\{4;7\right\}\)
b) Để \(A=\dfrac{4}{x-3}\) là số nguyên tố thì \(4⋮\left(x-3\right)\)
\(4⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Ta thấy:
Vì chỉ có mỗi 2 là số nguyên tố nên ta có:
x-3=2
x=5
\(A=\frac{4}{x-3}\) Đk x khác 3
a tìm x nguyên sao cho A có giá trị là số chính phương
b/tìm x nguyên sao cho A có giá trị là số nguyên tố
c/tìm x nguyên sao cho A có giá trị là số âm
Bài 1:Tìm số nguyên tố p, sao cho p+2 và p+4 cũng là các số nguyên tố.
Bài 2. Cho p và 2p + 1 là các số nguyên tố ( p > 3). Hỏi 4p + 1 là số nguyên tố hay hợp số?
Bài 3:
a) Tìm số nguyên tố p,sao cho p + 4 và p + 8 cũng là các số nguyên tố.
b) Tìm số nguyên tố p, sao cho p + 6, p + 8, p + 12, p + 14 cũng là các số nguyên tố.
Bài 4: Tìm số tự nhiên nhỏ nhất có 12 ước số.
Bài 5: Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau: a) 7n + 10 và 5n + 7 ; b) 2n + 3 và 4n + 8
c) 4n + 3 và 2n + 3 ; d) 7n + 13 và 2n + 4 ; e) 9n + 24 và 3n + 4 ; g) 18n + 3 và 21n + 7
Bài 1:
Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố
2 + 4 = 6 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố
3 + 4 = 7 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố
Vậy p = 3k + 1 không thỏa mãn
Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p = 3k + 2 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất.
Bài 2:
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
Bài 3:
a) Nếu p = 2 thì p + 4 = 2 + 4 = 6 không là số nguyên tố
p + 8 = 2 + 8 = 10 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 4 = 3 + 4 = 7 là số nguyên tố
p + 8 = 3 + 8 = 11 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Nếu p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) không là số nguyên tố
p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p > 3 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất
Tìm số nguyên a sao cho -3/4<a/12<-5/9
\(\dfrac{-3}{4}< \dfrac{a}{12}< \dfrac{-5}{9}\)
\(\Rightarrow\dfrac{-27}{36}< \dfrac{3a}{36}< \dfrac{-20}{36}\)
\(\Rightarrow-27< 3a< -20\)
\(\Rightarrow a=\left\{-8;-7\right\}\)
a) tìm số nguyên x sao cho (x-1) là ước của 15
b) tìm các số nguyên x sao cho 3x+4 chia hết cho x-3
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.
1)Tìm a và b biết: ƯCLN(a,b) + BCNN(a,b) =42
2) tìm số nguyên tố p, sao cho p+2 vafp+4 cùng là 2 số nguyên tố
3) Cho p và p+4 là các số nguyên tố (p>3). CMR p+8 là hợp số
tìm số nguyên a sao cho \(\frac{a+2}{a+1}:\frac{3}{4}\)được thương là số nguyên
1)Tìm số nguyên x là bội của 5 sao cho -20 bé hơn học bằng x bé hơn 15
2)tìm số nguyên n sao cho -3 chia hết cho n+1
3)tìm số nguyên x là bội của 4 sao cho -22 bé hơn hoặc bằng x bé hơn 16
4)tìm số nguyên n sao cho -2 chia hết cho n-1
5)tìm tổng các số nguyên x thỏa : -49 < (hoặc=) x <48
6)tìm số nguyên n sao cho n+5 chia hết cho n+1
7)tìm tổng các số nguyên x thỏa : -15 < (hoặc=) x <17
8)tìm số nguyên cho n sao n-7 là ước của 5
9)liệt kê và tính tổng các số nguyên thỏa : -5<x<(hoặc=)7
10)tìm số nguyên sao cho (4n-5) chia hết cho n
11)đơn giản biểu thức khi bỏ ngoặc
a)(a+b-c)-(b-c+d)
b)-(a-b+c)+(a-c+d)
-Mong các bạn giải giúp mik nha cám ơn các bn trước!!
bài 1:tìm số nguyên n sao cho:
a)n+3 chia hết cho n-1
b) 4n+3 chia hết cho 2n+1
bài 2:tìm cặp số a,b thuộc Z sao cho:
a) a.b=13
b) a.b=-10
bài 3:tìm các số nguyên x,y sao cho:
(2.x-1).(y+4)=11
bài 1:
a)<=>(n-1)+4 chia hết n-1
=>4 chia hết n-1
=>n-1\(\in\){-1,-2,-4;1,2,4}
=>n\(\in\){0,-1,-3,2,3,5}
b)<=>2(2n+1)+2 chia hết 2n+1
=>4 chia hết 2n+1
=>2n+1\(\in\){-1,-2,-4,1,2,4}
=>n\(\in\){-1;-3;-7;3;5;9}
bài 3 : <=>2y+8+xy+4x-1y-4=11
=>(8-4)+(2y-1y)+xy+4x=11
=>4+1y+x.y+x.4=11
=>1y+x.(x+y)=11-4
=>y+x.x+y=8
=>(x+y)^2=8
=>x+y=3
=>x và y là các số có tổng =3 ( bn tự liệt kê nhé )