Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhung Chu
Xem chi tiết
Nhung Chu
11 tháng 2 2016 lúc 19:37

Sao có 2 bạn tl mik mà nó ko hiện ra vậy

Nhung Nguyễn
Xem chi tiết
Nguyễn Linh Chi
21 tháng 11 2019 lúc 12:09

Câu hỏi của Nguyễn Phong - Toán lớp 8 - Học toán với OnlineMath

Khách vãng lai đã xóa
Hoàng Khánh Linh
Xem chi tiết
Hoàng Khánh Linh
Xem chi tiết
Rùa Ashu
11 tháng 9 2015 lúc 22:49

*Với x = 0 hoặc y = 0 ta có 1 – xy = 12 (đpcm)
* Với x ≠ 0, y ≠ 0, x,y ( Q ta có các cách sau:
Cách 1: Bình phương hai vế đẳng thức (1) ta được:


(  (đpcm)
Cách 2: Bình phương hai lần 
(1) (

(  (đpcm)
Cách 3: Chia cả hai vế của (1) cho x4 ta đợc


 (Nhân cả hai vế với y)

 (đpcm)
Cách 4:
(1) 
 (2) mặt khác ta lại có  (3)
Từ (2) và (3) ta có  là nghiệm của phương trình:
X2 – 2X + xy = 0
∆’ = 1 - xy là bình ơng của một số hữu tỷ
Cách 5:
(1) 

Cách 6: Đặt x = ky thay vào (1) và biến đổi đồng nhất ( đpcm.

P/s: Thích trả lời hộ nha

Tư Linh
Xem chi tiết
Nguyễn Khắc Quang
Xem chi tiết
Ngocmai
Xem chi tiết
Kiệt Nguyễn
21 tháng 11 2019 lúc 6:09

\(x^2+y^2+\left(\frac{xy+1}{x+y}\right)^2=2\)

\(\Leftrightarrow x^2+2xy+y^2+\left(\frac{xy+1}{x+y}\right)^2=2+2xy\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\frac{xy+1}{x+y}\right)^2-2\left(1+xy\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\frac{xy+1}{x+y}\right)^2-2\left(x+y\right).\frac{xy+1}{x+y}=0\)

\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)^2=0\)

\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)=0\)

\(\Leftrightarrow x+y=\frac{xy+1}{x+y}\)

\(\Leftrightarrow xy+1=\left(x+y\right)^2\)

Vì x,y là các số hữu tỉ nên xy + 1 là bình phương của 1 số hữu tỉ (đpcm)

Khách vãng lai đã xóa
Nguyễn Ngọc Mai
Xem chi tiết
Nguyễn Phong
Xem chi tiết
Phùng Minh Quân
3 tháng 8 2019 lúc 16:51

a) \(4\left(xy+yz+zx\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)=\left(x+y+z\right)^2\) là bình phương 1 số hữu tỉ => 4(xy+yz+zx) cũng là bp số hữu tỉ mà 4=22 => xy+yz+zx là bp 1 số hữu tỉ 

b) \(x^2+y^2+z^2=2\left(xy+yz+zx\right)\)\(\Leftrightarrow\)\(\left(x+y\right)^2+z^2=4xy+2yz+2zx\)

\(\Leftrightarrow\)\(\left(x+y\right)^2-2z\left(x+y\right)+z^2=4xy\)\(\Leftrightarrow\)\(\left(x+y-z\right)^2=4xy\)

Do (x+y-z)2 là bình phương 1 số hữu tỉ => 4xy là bp số hữu tỉ => xy là bp số hữu tỉ