cho a,b,c >0 thỏa a+b+c=6 cm:
\(\dfrac{ab}{6+a-c}\)+\(\dfrac{bc}{6+b-a}\)+\(\dfrac{ca}{6+c-b}\)<=2
Cho 3 số dương a, b, c thỏa mãn a + b + c = 6. Tính GTLN của biểu thức
\(P=\dfrac{ab}{6-c}+\dfrac{bc}{6-a}+\dfrac{ca}{6-b}\)
\(P=\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\)
\(P\le\dfrac{ab}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\dfrac{bc}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{ca}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\)
\(\Leftrightarrow P\le\dfrac{1}{2}\left(a+b+c\right)=3\)
\(P_{max}=3\) khi \(a=b=c\)
Nhờ mọi người giúp đỡ ạ ;) , mình với thằng bạn ngồi 1 tiếng chưa ra :(
Cho a,b,c>0 thỏa a+b+c=3. Chứng minh rằng:
\(\dfrac{1}{6-ab}+\dfrac{1}{6-bc}+\dfrac{1}{6-ca}\le\dfrac{3}{5}\)
Cho các số thực dương a,b,c thỏa mãn a + b + c = 6. Chứng minh bất đẳng thức:
\(\dfrac{ab}{6+2b+c}+\dfrac{bc}{6+2c+a}+\dfrac{ca}{6+2a+b}\le1\).
Lời giải:
Vì \(a+b+c=6\) nên BĐT cần chứng minh tương đương với:
\(\frac{ab}{2b+c+a+b+c}+\frac{bc}{2c+a+a+b+c}+\frac{ca}{2a+b+a+b+c}\leq 1(*)\)
Thật vậy, áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{ab}{2b+c+a+b+c}=\frac{ab}{(b+c)+(c+a)+2b}\leq \frac{ab}{9}\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2b}\right)\)
Hoàn toàn tương tự:
\(\frac{bc}{2c+a+a+b+c}\leq \frac{bc}{9}\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{2c}\right)\)
\(\frac{ca}{2a+b+a+b+c}\leq \frac{ca}{9}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{2a}\right)\)
Cộng các BĐT vừa thu được lại ta có:
\(\text{VT}\leq \frac{1}{9}\left(\frac{ab+ac}{b+c}+\frac{ab+bc}{a+c}+\frac{bc+ca}{a+b}+\frac{a+b+c}{2}\right)\)
\(\Leftrightarrow \text{VT}\leq \frac{1}{9}\left(a+b+c+\frac{a+b+c}{2}\right)=\frac{1}{9}\left(6+\frac{6}{2}\right)=1\)
BĐT \((*)\) hoàn tất, ta có đpcm.
Dấu bằng xảy ra khi \(a=b=c=2\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\text{VT}=\frac{ab}{6+2b+c}+\frac{bc}{6+2c+a}+\frac{ca}{6+2a+b}=\frac{ab}{a+b+c+2b+c}+\frac{bc}{a+b+c+2c+a}+\frac{ca}{a+b+c+2a+b}\)
\(=\frac{ab}{2b+(a+c)+(b+c)}+\frac{bc}{2c+(a+b)+(a+c)}+\frac{ca}{2a+(b+a)+(b+c)}\)
\(\leq \frac{ab}{9}\left(\frac{1}{2b}+\frac{1}{a+c}+\frac{1}{b+c}\right)+\frac{bc}{9}\left(\frac{1}{2c}+\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{ca}{9}\left(\frac{1}{2a}+\frac{1}{b+a}+\frac{1}{b+c}\right)\)
\(\text{VT}\leq \frac{a+b+c}{18}+\frac{ab+bc}{9(a+c)}+\frac{ab+ac}{9(b+c)}+\frac{bc+ac}{9(a+b)}\)
\(\text{VT}\leq \frac{(a+b+c)}{6}=\frac{6}{6}=1\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=2$
Cho a;b;c >0 thỏa \(a^2+b^2+c^2=6\).Tìm Min
\(P=\dfrac{ab+bc+ca}{4}+\dfrac{6}{a+b+c-2}-\dfrac{16c}{c^2+12}\)
Nghe mấy tiền bối đồn là đề này nằm trong đề đại học năm nào đó. Tự tìm nhá
Cho a,b,c >0 tm abc=1, C/m
\(\dfrac{1}{\sqrt{a^5+b^2+ab+6}}+\dfrac{1}{\sqrt{b^5+c^2+bc+6}}+\dfrac{1}{\sqrt{c^5+a^2+ca+6}}\le1\)
\(a^5+b^2+ab+6\ge3a^2b+6\)
\(\Rightarrow P\le\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{\sqrt{a^2b+2}}+\dfrac{1}{\sqrt{b^2c+2}}+\dfrac{1}{\sqrt{c^2a+2}}\right)\le\sqrt{\dfrac{1}{a^2b+2}+\dfrac{1}{b^2c+2}+\dfrac{1}{c^2a+2}}=\sqrt{Q}\)
\(Q=\dfrac{c}{a+2c}+\dfrac{a}{b+2a}+\dfrac{b}{c+2b}=\dfrac{1}{2}\left(1-\dfrac{a}{a+2c}+1-\dfrac{b}{b+2a}+1-\dfrac{c}{c+2b}\right)\)
\(Q=\dfrac{3}{2}-\dfrac{1}{2}\left(\dfrac{a^2}{a^2+2ac}+\dfrac{b^2}{b^2+2ab}+\dfrac{c^2}{c^2+2bc}\right)\)
\(Q\le\dfrac{3}{2}-\dfrac{1}{2}\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=1\)
\(\Rightarrow P\le\sqrt{1}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho a, b, c thỏa mãn: \(\sqrt{a}+\sqrt{b}+\sqrt{c}=7;a+b+c=23;\sqrt{abc}=3\). Tính giá trị của biểu thức: \(H=\dfrac{1}{\sqrt{ab}+\sqrt{c}-6}+\dfrac{1}{\sqrt{bc}+\sqrt{a}-6}+\dfrac{1}{\sqrt{ca}+\sqrt{b}-6}\)
Cho 3 số thực dương a;b;c. Chứng minh:
\(\dfrac{2a^3}{a^6+bc}+\dfrac{2b^3}{b^6+ca}+\dfrac{2c^3}{c^6+ab}\le\dfrac{a}{bc}+\dfrac{b}{ca}+\dfrac{c}{ab}\)
Cho a, b, c > 0 . CMR :
\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ca}{c+3a+2b}\le\dfrac{a+b+c}{6}\)
\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{ab}{9}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{2b}\right)=\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{a}{2}\right)\)
Tương tự:
\(\dfrac{bc}{b+3c+2a}\le\dfrac{1}{9}\left(\dfrac{bc}{a+b}+\dfrac{bc}{c+a}+\dfrac{b}{2}\right)\)
\(\dfrac{ca}{c+3a+2b}\le\dfrac{1}{9}\left(\dfrac{ca}{b+c}+\dfrac{ca}{a+b}+\dfrac{c}{2}\right)\)
Cộng vế:
\(VT\le\dfrac{1}{9}\left(\dfrac{bc+ca}{a+b}+\dfrac{ca+ab}{b+c}+\dfrac{bc+ab}{c+a}+\dfrac{a+b+c}{2}\right)=\dfrac{a+b+c}{6}\)
Dấu "=" xảy ra khi \(a=b=c\)
Cho a,b,c là các số thực dương thỏa mãn: a + b + c + ab + bc + ca = 6. Chứng minh rằng : \(\dfrac{a^3}{b}\)+ \(\dfrac{b^3}{c}\) +\(\dfrac{c^3}{a}\) ≥ 3
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{ab+bc+ca}=a^2+b^2+c^2\)
Mặt khác ta có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge2\left(a+b+c+ab+bc+ca\right)-3=9\)
\(\Rightarrow a^2+b^2+c^2\ge3\)
Từ đó suy ra đpcm