Tích của một số vô tỉ và một số hữu tỉ khác 0 là một số vô tỉ hay số hữu tỉ ?
Tích của một số vô tỉ và một số hữu tỉ là một số vô tỉ hay số hữu tỉ?
Đề bài: Chứng minh rằng:
a) Tổng của một số hữu tỉ và một số vô tỉ là một số vô tỉ
b) Tích của một số hữu tỉ khác 0 với một số vô tỉ là một số vô tỉ
c) Thương của một số vô tỉ với một số vô tỉ là một số vô tỉ
Thương của một số vô tỉ và một số hữu tỉ là một số vô tỉ hay một số hữu tỉ ?
Là một số vô tỉ
VD căn 2 là số vô tỉ ; 1 là hữu tỉ
căn 2 : 1 = căn 2 là số vô tỉ
Thương của một số vô tỉ và một số hữu tỉ là một số vô tỉ hay một số hữu tỉ ?
Gọi a là số vô tỉ, b là số hữu tỉ.
Ta có \(\dfrac{a}{b}\) là sô vô tỉ vì nếu \(\dfrac{a}{b}=b'\)là số hữu tỉ thì \(a=b\). \(b'\) suy ra a là số hữu tỉ, trái với giả thiết a là số vô tỉ.
Trong 4 mệnh đề này mệnh đề nào đúng mệnh đề nào sai. Hãy chứng minh điều đó
Tổng 1 số vô tỉvới một số hữu tỉ là một số vô tỉ
Tích của một số vô tỉ với 1số vô tỉ khác 0 là một số vô tỉ
Thương một số vô tỉ với 1 số hữu tỉ là số vô tỉ
TỔng số vô tỉ là 1 số vô tỉ
chứng minh rằng thương của một số vô tỉ và một số hữu tỉ khác 0 là một số vô tỉ
Tích của một số vô tỉ với một số nguyên dương là số hữu tỉ hay vô tỉ ? Hãy giải thích tại sao có vô số vô tỉ.
Tích của một số vô tỉ với một số nguyên dương có thể là số hữu tỉ hoặc vô tỉ, tùy thuộc vào giá trị của số vô tỉ và số nguyên dương.
Nếu số vô tỉ là 0, thì tích của nó với bất kỳ số nguyên dương nào cũng sẽ là 0, một số hữu tỉ.
Nếu số vô tỉ khác 0, thì tích của nó với một số nguyên dương sẽ là một số vô tỉ. Điều này có thể được giải thích bằng cách giả sử tích của số vô tỉ với số nguyên dương là một số hữu tỉ. Khi đó, ta có thể viết số vô tỉ dưới dạng phân số tối giản, tức là tử số và mẫu số không có thể chia hết cho bất kỳ số nguyên dương nào. Nhưng khi nhân số vô tỉ với một số nguyên dương, tử số và mẫu số của phân số tối giản này sẽ được nhân với số nguyên dương đó, và do đó sẽ có thể chia hết cho số nguyên dương đó. Điều này trái với giả sử ban đầu, do đó tích của số vô tỉ với số nguyên dương không thể là một số hữu tỉ.
Vì vậy, tích của một số vô tỉ với một số nguyên dương có thể là số hữu tỉ hoặc vô tỉ, tùy thuộc vào giá trị của số vô tỉ và số nguyên dương
a, Gọi số nguyên dương là a ( a \(\in\) Z+)
Giả sử tích của số vô tỉ với số nguyên dương a là một số hữu tỉ thì tích đó có dạng: \(\dfrac{b}{c}\) ( b; c \(\in\) Z ; c \(\ne\) 0)
Khi đó số vô tỉ bằng: \(\dfrac{b}{c}\) : a = \(\dfrac{b}{c\times a}\) ( là một số hữu tỉ vô lý)
Nên điều giả sử là sai, vậy tích của một số vô tỉ với một số nguyên dương là số vô tỉ.
b, Giả sử chỉ có 1 số vô tỉ thì tích của số hữu tỉ với một số nguyên dương phải là một số hữu tỉ (trái với điều đã chứng minh ở trên)
Nên điều giả sử là sai. Vậy có vô số số vô tỉ
Tích của một số vô tỉ với một số nguyên dương là số hữu tỉ hay vô tỉ ? Hãy giải thích tại sao có vô số vô tỉ.
Tích của 1 số vô tỉ và 1 số nguyên dương là 1 số vô tỉ, vì số vô tỉ là số vô hạn không tuần hoàn nên khi nhân với 1 số nguyên dương sẽ là số vô tỉ.
Tích của một số vô tỷ với một số nguyên dương có thể là số hữu tỷ hoặc vô tỷ, tùy thuộc vào giá trị của số vô tỷ và số nguyên dương.
Nếu số vô tỷ là 0, thì tích của nó với bất kỳ số nguyên dương nào cũng sẽ là 0, một số hữu tỷ.
Nếu số vô tỷ giá khác 0, thì tích của nó với một số nguyên dương sẽ là một số vô tỷ. Điều này có thể được giải thích bằng cách giả sử sử dụng số vô tỷ với số nguyên dương là một số hữu tỷ. Khi đó, ta có thể viết số vô tỷ lệ dưới dạng phân số tối thiểu, tức là số và mẫu số không thể chia hết cho bất kỳ số nguyên dương nào. Nhưng khi nhân số vô tỉ với một số nguyên dương, tử số và mẫu số của phân số tối thiểu này sẽ được nhân với số nguyên dương đó, và do đó sẽ có thể chia hết cho số nguyên dương đó. Điều này trái ngược với giả sử ban đầu, do đó số vô tỷ với số nguyên dương không thể là một số hữu tỷ.
Vì vậy, tích của một số vô tỷ với một số nguyên dương có thể là số hữu tỷ hoặc vô tỷ, tùy thuộc vào giá trị của số vô tỷ và số nguyên dương.
Dùng phương pháp phản chứng em nhé:
a, Gọi số nguyên dương là a ( a \(\in\) Z+)
Giả sử tích của số vô tỉ và số nguyên dương là số hữu tỉ thì khi đó
tích của số vô tỉ với a có dạng : \(\dfrac{b}{c}\) ( b ; c \(\in\) Z; c \(\ne\) 0)
Như thế số vô tỉ bằng: \(\dfrac{b}{c}\) : a = \(\dfrac{b}{c\times a}\) ( là một số hữu tỉ vô lý)
Nên điều giả sử là sai, vậy tích của số vô tỉ với số nguyên dương là một số vô tỉ.
b, Giả sử chỉ có một số vô tỉ, như vậy tích của một số vô tỉ với một số nguyên dương sẽ là số hữu tỉ. Điều này trái với điều đã chứng minh ở trên
Nên điều giả sử là sai, bởi vậy có vô số số vô tỉ
chung minh
a)tổng của số hữu tỉ và số vô tỉ là một số vô tỉ
b)tích của một số vô tỉ và một số hữu tỉ là số vô tỉ
please!please!please!
tổng các số hữu tỉ và số vô tỉ là số vô tỉ
a) giả sử tổng số hữu tỉ và số vô tỉ là số hữu tỉ
Ta có a+b=c(a,c là số hữu tỉ ; b là số vô tỷ)
=> b=c-a
mà c-a là số hữu tỉ ( do a,c là số hữu tỉ)
=> b là số hữu tỉ trái đề bài
Vậy tổng số hữu tỉ và số vô tỉ là số vô tỉ
b) phần này cần điều kiện số hữu tỉ khi nhân kia phải khác 0
Giả sử tích một số vô tỉ và một số hữu tỉ là 1 số hữu tỉ
Ta có a.b=c (a,c là số hữu tỉ ; b là số vô tỷ, a khác 0)
=> b=c/a
mà c/a là số hữu tỉ ( do a,c là số hữu tỉ)
=> b là số hữu tỉ trái đề bài
Vậy tích một số vô tỉ và một số hữu tỉ là 1 số vô tỉ