Cho S =1+2+2mu2+2mu3+...+2mu9+2mu10+2mu11.Hay so sanh Svoi 5*2mu10
Chung to tong sau co chia het cho 3 hay k
2+2mu2+2mu3+2mu4+2mu5+2mu6+2mu7+2mu8+2mu9+2mu10
A=1/2+1/2mu2+1/2mu3+.....+1/2mu10
Chứng minh: A+1/2mu10=1
\(\Rightarrow\frac{1}{2}A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{11}}\)
\(\Rightarrow\) \(\frac{1}{2}A=A-\frac{1}{2}=\frac{1}{2^{10}}-\frac{1}{2}\)
Vậy \(A=\left(\frac{1}{2^{10}}-\frac{1}{2}\right):\frac{1}{2}=\frac{2}{2^{10}}-1\)
Do đó \(A+\frac{1}{2^{10}}=\frac{2}{2^{10}}-1+\frac{2}{10}=1\)
cau1
18 chia hết cho (x-1)
vậy x là...?
cau2
5 mũ 2 cộng mũ 1 trừ 5 mu x =10
vậy x bằng....?
câu 3
(x+21)chia hết cho (x+3)
vậy x bằng...?
cau4
23x chia hết cho 6
vậy x bằng...?
cau4
tổng sau có chia hết cho 3 không:2+2mu2+2mu3+2mu4+2mu5+2mu6+2mu7+2mu8+2mu9+2mu10
câu 1 :19
câu 2:1
câu 3:3
câu 4:4
câu 5:có chia hết cho 3 vì tổng =2046
câu 1:19
câu 2:1
câu 3:3
câu 4:4
câu 5: có chia hết cho ba vì tổng = 2046
Cho Phép bằng 2+2 mu2+mu3+2mu4+2mu5+2mu6+2mu7+2mu8+2mu9+2mu10.Chung minh P chia hết cho 3
Lam on giúp mik voi
P =2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^10
= ( 2+2^2 ) + ( 2^3 + 2^4 ) + ( 2^5 + 2^6 ) + ( 2^7 + 2^8 ) + ( 2^9 + 2^10 )
= 2.( 1+2 ) + 2^3.( 1+2 ) + 2^5.( 1+2 ) + 2^7.( 1+2 ) + 2^9.( 1 + 2 )
= 2.3+2^3.3+2^5.3+2^7.3+2^9.3
= ( 2+2^3+2^5+2^7+2^9).3 chia hết cho 3
=> P chia hết cho 3
S=2+2mu2+2mu3+....+2mu100;hay chung to rang S chia het cho 15 va chu so tan cung cua S
1) hai mu2+2 mu3 +2mu10 .......+2mu100
2) tim chu so tan cungcua so[2mu 2013]o tren co mu 2
1/
$A=2^2+2^3+2^4+...+2^{100}$
$2A=2^3+2^4+2^5+....+2^{101}$
$\Rightarrow 2A-A=2^{101}-2^2$
$\Rightarrow A=2^{101}-4$
2/
Đề không rõ ràng. Bạn xem lại nhé.
Cho b=1+2+2mu2+2mu3+...+2mu6,A=2mu2+2mu3+2mu4+..+2mutam chứng minh rằng A=4B
\(B=1+2+2^2+...+2^6.\)
\(=>4B=2^2+2^3+...+2^8\)\(\left(1\right)\)
\(A=2^2+2^3+...+2^8\)\(\left(2\right)\)
Từ (1) và (2)
=> A = 4B
tinh S=1/2+1/2mu2+1/2mu3+...+1/2mu20
\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{20}}\)
=> \(2S=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{19}}\)
=> \(2S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\right)\)
=> \(S=1-\frac{1}{2^{20}}\)
4mu2 .4mu3 tren 2mu10
b) 2mu7.9mu3tren6mu5.8mu2
a: \(=\dfrac{4^5}{2^{10}}=1\)
b: \(=\dfrac{2^7\cdot3^6}{2^5\cdot2^6\cdot3^5}=\dfrac{1}{16}\cdot3=\dfrac{3}{16}\)