x✓x+1/x-1 - x-1/✓x+1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 =
1 nhé bạn
1
(số nào nhân với 1 bằng chính nó)
= 1
#Học tốt!!!
1) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
Ta có: \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\)
\(\Leftrightarrow\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\)
Suy ra: \(x^2+2x+1-\left(x^2-2x+1\right)=4\)
\(\Leftrightarrow x^2+2x+1-x^2+2x-1=4\)
\(\Leftrightarrow4x=4\)
hay x=1(loại)
Vậy: \(S=\varnothing\)
2) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{x+2}{x-2}+\dfrac{x}{x+2}=2\)
\(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{2\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2+4x+4+x^2-2x=2x^2-8\)
\(\Leftrightarrow2x^2+2x+4-2x^2-8=0\)
\(\Leftrightarrow2x-4=0\)
\(\Leftrightarrow2x=4\)
hay x=2(loại)
Vậy: \(S=\varnothing\)
1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 5 = ?
1/x-1-x^3-x/x^2+1(x/x^2-2x+1-1/x^2-1)
[2/(x+1)^3.(1/x+1)+1/x^2+2x+1(1/x^2+1)]:x-1/x^3=x/x-1
(x/x^2-36-x-6/x^2+6x):2x-6/x^2+6x+x/6-x
giúp mik với ;-; mik cần gấp
A1= \(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\)với x≠1, x≥ 0
A2= \(\left[\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x\sqrt{x}-x+\sqrt{x}-1}\right]:\left(1-\dfrac{\sqrt{x}}{x+1}\right)\)với x≥0, x≠1 và -1
\(A_1=\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
\(A_2=\left[\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right]:\dfrac{x-\sqrt{x}+1}{x+1}\\ A_2=\dfrac{x-1}{\left(\sqrt{x}-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{x-\sqrt{x}+1}\\ A_2=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+1}{x-\sqrt{x}+1}\)
giải phương trình |x+1|+|x-1|=1+|x^2-1|giải phương trình |x+1|+|x-1|=1+|x^2-1|giải phương trình |x+1|+|x-1|=1+|x^2-1|giải phương trình |x+1|+|x-1|=1+|x^2-1|giải phương trình |x+1|+|x-1|=1+|x^2-1|
ta có :
\(\left|x+1\right|+\left|x-1\right|=1+\left|\left(x-1\right)\left(x+1\right)\right|\)
\(\Leftrightarrow\left|x-1\right|\left|x+1\right|-\left|x-1\right|-\left|x+1\right|+1=0\)
\(\Leftrightarrow\left(\left|x-1\right|-1\right)\left(\left|x+1\right|-1\right)=0\Leftrightarrow\orbr{\begin{cases}\left|x-1\right|=1\\\left|x+1\right|=1\end{cases}}\)
\(\Leftrightarrow x\in\left\{-2,0,2\right\}\)
Thực hiện phép trừ :
\(\dfrac{2x}{x-1}-\dfrac{x}{x-1}-\dfrac{1}{x-1}\)
Cách thực hiện nào sau đây sai ?
(A) \(\dfrac{2x}{x-1}-\dfrac{x}{x-1}-\dfrac{1}{x-1}=\left(\dfrac{2x}{x-1}-\dfrac{x}{x-1}\right)-\dfrac{1}{x-1}=......................\)
(B) \(\dfrac{2x}{x-1}-\dfrac{x}{x-1}-\dfrac{1}{x-1}=\dfrac{2x}{x-1}-\left(\dfrac{x}{x-1}-\dfrac{1}{x-1}=..............\right)\)
(C) \(\dfrac{2x}{x-1}-\dfrac{x}{x-1}-\dfrac{1}{x-1}=\dfrac{2x}{x-1}-\left(\dfrac{x}{x-1}+\dfrac{1}{x-1}\right)=........\)
(D) \(\dfrac{2x}{x-1}-\dfrac{x}{x-1}-\dfrac{1}{x-1}=\dfrac{2x}{x-1}+\dfrac{-x}{x-1}+\dfrac{-1}{x-1}=.........\)
1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 2 x3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 x 13 x 14 x 15 =
the only
jjjjjji8hgjkoljjimkkpllkkkkkkllkkkkklkI-ol0loookkkkokpplplkoo
hack nè
1,307,674,368,000