Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
England
Xem chi tiết
Thanh Trà
1 tháng 12 2017 lúc 19:13

Chữa lại đề.Bạn xem lại đề xem đúng chưa nhé!

\(D=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}+\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}+\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}+\dfrac{3}{2004}}\)

\(D=\dfrac{1.\left(\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}\right)}{5.\left(\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}\right)}-\dfrac{2.\left(\dfrac{1}{2002}+\dfrac{1}{2003}+\dfrac{1}{2004}\right)}{3\left(\dfrac{1}{2002}+\dfrac{1}{2003}+\dfrac{1}{2004}\right)}\)

\(D=\dfrac{1}{5}-\dfrac{2}{3}\)

\(D=-\dfrac{7}{15}\)

Cái này học lâu rồi.Bạn xem lại xem mình làm đúng chưa nhé!

Đoàn Phương Linh
Xem chi tiết
Quách Trần Gia Lạc
Xem chi tiết
 Mashiro Shiina
9 tháng 2 2018 lúc 22:17

\(A=\dfrac{\dfrac{1}{2013}+\dfrac{2}{2012}+\dfrac{3}{2011}+...+\dfrac{2011}{3}+\dfrac{2012}{2}+\dfrac{2013}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}}\)

\(A=\dfrac{1+\left(\dfrac{1}{2013}+1\right)+\left(\dfrac{2}{2012}+1\right)+\left(\dfrac{3}{2011}+1\right)+...+\left(\dfrac{2012}{2}+1\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}}\)

\(A=\dfrac{\dfrac{2014}{2014}+\dfrac{204}{2013}+\dfrac{2014}{2012}+\dfrac{2014}{2011}+...+\dfrac{2014}{2}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}}\)

\(A=\dfrac{2014\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2014}}=2014\)

Ma Sói
9 tháng 2 2018 lúc 22:23

mình ko chắc đúng nha !

Số số hạng của tử là :

(2013-1):1+1=2013(số hạng)

\(\dfrac{\dfrac{1}{2013}+\dfrac{2}{2012}+\dfrac{3}{2011}+.....+\dfrac{2011}{3}+\dfrac{2012}{2}+\dfrac{2013}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}\)

\(=\dfrac{\dfrac{1}{2013}+1+\dfrac{2}{2012}+1+....+\dfrac{2012}{2}+1+\dfrac{2013}{1}-2012}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}\)

\(=\dfrac{\dfrac{2014}{2013}+\dfrac{2014}{2012}+....+\dfrac{2014}{2}+1}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}\)

\(=2014\left(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}+\dfrac{1}{2014}}\right)\)

=2014

Mình ghi thêm ở cái dâu bằng thứ 2 cuối cùng trên tử có ghi trừ 2012 là do tử có 2013 hạng tử mà mình chỉ cộng 1 cho 2012 hạng tử nên phải trừ đi 2012

linh angela nguyễn
Xem chi tiết
Nguyễn Huy Tú
2 tháng 3 2017 lúc 19:03

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2012+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+...+\left(\frac{1}{2013}+1\right)}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)}\)

\(=\frac{1}{2014}\)

Vậy \(A=\frac{1}{2014}\)

Thái Đào
2 tháng 3 2017 lúc 19:04

Đặt B=\(2012+\dfrac{2012}{2}+\dfrac{2011}{3}+...+\dfrac{1}{2013}\)

=>B=\(\left(1+\dfrac{2012}{2}\right)+\left(1+\dfrac{2011}{3}\right)+...+\left(1+\dfrac{1}{2013}\right)\)

=\(\dfrac{2014}{2}+\dfrac{2014}{3}+...+\dfrac{2014}{2013}\)

=\(2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right)\)

=>A=\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2013}}{2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right)}=\dfrac{1}{2014}\)

Vậy ...

Trần Thị Hương Lan
Xem chi tiết
Lê Bùi
20 tháng 4 2018 lúc 10:17

\(A=1+\dfrac{\dfrac{\left(1+2\right).2}{2}}{2}+\dfrac{\dfrac{\left(1+3\right).3}{2}}{3}+...+\dfrac{\dfrac{\left(1+2013\right).2013}{2}}{2013}\)

\(A=1+\dfrac{\dfrac{3.2}{2}}{2}+\dfrac{\dfrac{4.3}{2}}{3}+...+\dfrac{\dfrac{2014.2013}{2}}{2013}\)

\(A=1+\dfrac{3}{2}+\dfrac{2.3}{3}+...+\dfrac{1007.2013}{2013}\)

\(A=1+\dfrac{3}{2}+2+\dfrac{5}{2}...+1007\)

\(2A=2+3+4+5+6+...+2012+2013+2014\)

\(2A=\dfrac{\left(2+2014\right).2013}{2}\)

\(A=\dfrac{2016.2013}{4}=504.2013\)

Lê Bùi
20 tháng 4 2018 lúc 10:40

\(B=\dfrac{-2}{1.3}+\dfrac{-2}{2.4}+...+\dfrac{-2}{2012.2014}+\dfrac{-2}{2013.2015}\)

\(-B=\dfrac{2}{1.3}+\dfrac{2}{2.4}+...+\dfrac{2}{2012.2014}+\dfrac{2}{2013.2015}\)

\(-B=\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2013.2015}\right)+\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{2012.2014}\right)\)

\(-B=\left(\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+...+\dfrac{2015-2013}{2013.2015}\right)+\left(\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+...+\dfrac{2014-2012}{2012.2014}\right)\)

\(-B=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{2013}-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}+...+\dfrac{1}{2012}-\dfrac{1}{2014}\right)\)

\(-B=\left(1-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{2014}\right)\)

\(-B=\dfrac{2014}{2015}+\dfrac{2012}{2014.2}=\dfrac{2014^2+1006.2015}{2015.2014}\)

\(B=\dfrac{2014^2+1006.2015}{-2015.2014}\)

Ngô Bá Thành
Xem chi tiết
Ngô Bá Thành
11 tháng 2 2022 lúc 19:25

Ai trả lời đi please

Billy Pro
30 tháng 8 2023 lúc 11:58

A= 1+(\(\dfrac{1}{2014}\)+1)+(\(\dfrac{2}{2013}\)+1)+...+(\(\dfrac{2013}{2}\)+1)

= \(\dfrac{2015}{2015}\)+(\(\dfrac{1}{2014}\)+1)+(\(\dfrac{2}{2013}\)+1)+...+(\(\dfrac{2013}{2}\)+1)

= 2015.(\(\dfrac{1}{2015}\)+\(\dfrac{1}{2014}\)+\(\dfrac{1}{2013}\)+...+\(\dfrac{1}{2}\))=2015.B

\(\Rightarrow\) \(\dfrac{A}{B}\)=2015

Trần Đức Vinh
Xem chi tiết
The darksied
28 tháng 2 2023 lúc 1:09

Nhận xét nè: ở mẫu số tại các phân số có tử số + mẫu số = 2012. Vì vậy mục tiêu là tạo ra con 2012 ở các phân số của mẫu số. E xử con tử số ở phân số mẫu số sao cho ra con 2012 là được =))

Lê Ngọc Anh
Xem chi tiết
Nguyễn Quý Vương
17 tháng 3 2022 lúc 8:51

1)\(\dfrac{-5}{2}:\dfrac{1}{4}\) = \(\dfrac{-5}{2}\) x \(\dfrac{4}{1}\) = \(\dfrac{-20}{2}\)

dâu cute
17 tháng 3 2022 lúc 8:52

1) \(\dfrac{-5}{2}:\left(\dfrac{3}{4}-\dfrac{1}{2}\right)\) \(=\dfrac{-5}{2}:\dfrac{1}{4}=-10\)

 

Xuan Tran
Xem chi tiết
Lê Bùi
28 tháng 4 2018 lúc 19:57

ĐẶT \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2012}}\)

\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2011}}\)

\(2A-A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2012}}\right)\)

\(A=1-\dfrac{1}{2^{2012}}\)