tìm x, biết: 1/6x+1/12x+1/20x+...+1/2450x=1
tim x
a) 1/6x + 1/12x + 1/20x +...+1/2450x = 1
b) (2/2/9 - x) = 1/12 + 1/20 +1/30 +1/42 + 1/56 + 1/72
Help me . I need urgent
\(\dfrac{1}{6}x+\dfrac{1}{12}x+\dfrac{1}{20}x+...+\dfrac{1}{2450}x=1\)
\(x\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{2450}\right)\)=1
\(x\left(\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{49\times50}\right)\)=1
\(x\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=1\)
\(x\left(\dfrac{1}{2}-\dfrac{1}{50}\right)=1\)
\(x\times\)\(\dfrac{12}{25}=1\)
\(\Rightarrow x=1\div\dfrac{12}{25}\)
\(x=1\times\dfrac{25}{12}=\dfrac{25}{12}\)
vậy \(x=\dfrac{25}{12}\)
vậy \(x=2\)\(x=2\)\(\Rightarrow\left(\dfrac{20}{9}-x\right)=\dfrac{1}{3}-\dfrac{1}{9}\)\(\left(2\dfrac{2}{9}-x\right)\)=\(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{72}\)
\(\Rightarrow\left(\dfrac{20}{9}-x\right)=\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{72}\)\(\Rightarrow\left(\dfrac{20}{9}-x\right)=\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{8\times9}\)\(\Rightarrow\left(\dfrac{20}{9}-x\right)=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
nè bn!!!!
máy hết chỗ đánh làm ơn chuyển 3 dòng đầu này xuống cuối
\(\left(\dfrac{20}{9}-x\right)=\dfrac{1}{3}-\dfrac{1}{9}\)
\(\left(\dfrac{20}{9}-x\right)=\dfrac{2}{9}\)
\(x=\dfrac{20}{9}-\dfrac{2}{9}\)
\(x=2\)
vậy x=2
giúp mk nha !!!THANKS!!!
tìm x biết:
1/2x +1/6x+1/12x+1/20x+1/30x+1/42x=36
=1/x*(1/2+1/6+1/12+1/20+1/30+1/42).
Ta có:
1/2+1/6+1/12+1/20+1/30+1/42.
=1/1*2+1/2*3+1/3*4+1/4*5+1/5*6+1/6*7.
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7.
=1-1/7.
=6/7.
=>1/x*6/7=36.
=>1/x=36:6/7=42.
=>x=1/42.
Vậy x=1/42.
chứng minh đẳng thức sau :
x(x+1)(x+2)=x3+3x2+2x
tìm x biết :
(3x - 2)(4x - 5) - (2x - 1)(6x+2) = 0
thực hiện phép tính :
5x(12x+7) - (3x+1)(20x - 5)
a, Biến đổi vế trái :
\(VT=x\left(x+1\right)\left(x+2\right)=\left(x^2+x\right)\left(x+2\right)=x^3+3x^2+2x\) 2x
b,\(\left(3x-2\right)\left(4x-5\right)-\left(2x-1\right)\left(6x+2\right)=0\)
\(\Leftrightarrow12x^2-15x-8x+10-\left(12x^2+4x-6x-2\right)=0\)
\(\Leftrightarrow12x^2-23x+10-12x^2+2x+2=0\)
\(\Leftrightarrow12-21x=0\)
\(\Leftrightarrow-21x=-12\)
\(\Leftrightarrow21x=12\)
\(\Leftrightarrow x=\frac{4}{7}\)
c,
Tìm x
a) 6x(5x + 3) + 3x(1 – 10x) = 7 b) (3x – 3)(5 – 21x) + (7x + 4)(9x – 5) = 44
c) (x + 1)(x + 2)(x + 5) – x2(x + 8) = 27
d) 5x(12x + 7) – 3x(20x – 5) = - 100
e) 0,6x(x – 0,5) – 0,3x(2x + 1,3) = 0,138
a) 6x(5x + 3) + 3x(1 – 10x) = 7
⇒ 30x2+18x+3x-30x2=7
⇒21x=7
⇒x=\(\dfrac{7}{21}\)
⇒x= \(\dfrac{1}{3}\)
b) (3x – 3)(5 – 21x) + (7x + 4)(9x – 5) = 44
⇒15x-63x2-15+63x + 63x2-35x+36x-20=44
⇒79x-35=44
⇒79x=44+35
⇒79x=79
⇒x=1
d) 5x(12x + 7) – 3x(20x – 5) = - 100
⇒60x2+35x-60x2+15=-100
⇒35x+15=-100
⇒35x=-100-15
⇒35x=-115
⇒x=\(\dfrac{-115}{35}\)
⇒x=\(\dfrac{-23}{7}\)
tìm x biết (24x-1)(12x-1)(8x-1)(6x-1)=1
(24x-1)(24x-2)(24x-3)(24x-4)=24
đặt 24x-4=a=>a(a+1)(a+2)(a+3)=24
<=>(a^2+3a)(a^2+3a+2)=24
đặt a^2+3a+1=b => (b-1)(b+1)=24
<=> b^2-5^2=0
<=> b= 5 hoặc b=-5 thay vô tìm a rồi tìm x
chúc bạn hk tốt
Bài 1: Tìm x, biết .
a. 5x( 12x + 7) - 3x ( 20x - 5) = -100
b. 5x( 2x - 7) + 2x ( 8 - 5x) = 5
a)\(60x^2+35x-60x^2+15x=100\)
35x+15x=100
50x=100 =>x=2
b)\(10x^2-35x+16x-10x^2=5\)
-35x+16x=5
-19x=5 =>x=-5/19
a)60x2+35x−60x2+15x=10060x2+35x−60x2+15x=100
35x+15x=100
50x=100
=>x=2
b)10x2−35x+16x−10x2=510x2−35x+16x−10x2=5
-35x+16x=5
-19x=5
=>x=-5/19
tìm x biết: \(\text{8x^3-12x^2+6x+1-(4x^2-1)=0}\)
Lời giải:
PT $\Leftrightarrow 8x^3-16x^2+6x+2=0$
$\Leftrightarrow (8x^3-8x^2)-(8x^2-8x)-(2x-2)=0$
$\Leftrightarrow 8x^2(x-1)-8x(x-1)-2(x-1)=0$
$\Leftrightarrow (x-1)(8x^2-8x-2)=0$
$\Leftrightarrow 2(x-1)(4x^2-4x-1)=0$
$\Leftrightarrow x-1=0$ hoặc $4x^2-4x-1=0$
Nếu $x-1=0\Leftrightarrow x=1$
Nếu $4x^2-4x-1=0$
$\Leftrightarrow (2x-1)^2-2=0$
$\Leftrightarrow (2x-1-\sqrt{2})(2x-1+\sqrt{2})=0$
$\Leftrightarrow x=\frac{1\pm \sqrt{2}}{2}$
tìm giá trị lớn nhất hoặc nhỏ nhất của biểu thức sau
a) 25x2-20x+7
b)9x2-6x+2
c)-x2+2x-2
d)x2+12x+39
e)-x2-12x
f)4x-x2+1
a) Ta có: \(25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)
b) Ta có: \(9x^2-6x+2\)
\(=9x^2-6x+1+1\)
\(=\left(3x-1\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)
c) Ta có: \(-x^2+2x-2\)
\(=-\left(x^2-2x+2\right)\)
\(=-\left(x^2-2x+1+1\right)\)
\(=-\left(x-1\right)^2-1\le-1\forall x\)
Dấu '=' xảy ra khi x-1=0
hay x=1
d) Ta có: \(x^2+12x+39\)
\(=x^2+12x+36+3\)
\(=\left(x+6\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=-6
e) Ta có: \(-x^2-12x\)
\(=-\left(x^2+12x+36-36\right)\)
\(=-\left(x+6\right)^2+36\le36\forall x\)
Dấu '=' xảy ra khi x=-6
f) Ta có: \(4x-x^2+1\)
\(=-\left(x^2-4x-1\right)\)
\(=-\left(x^2-4x+4-5\right)\)
\(=-\left(x-2\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=2
tìm giá trị lớn nhất hoặc nhỏ nhất của biểu thức sau
a) 25x2-20x+7
b)9x2-6x+2
c)-x2+2x-2
d)x2+12x+39
e)-x2-12x
f)4x-x2+1
a) Ta có: \(25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)
b) Ta có: \(9x^2-6x+2\)
\(=9x^2-6x+1+1\)
\(=\left(3x-1\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)
c) Ta có: \(-x^2+2x-2\)
\(=-\left(x^2-2x+2\right)\)
\(=-\left(x^2-2x+1+1\right)\)
\(=-\left(x-1\right)^2-1\le-1\forall x\)
Dấu '=' xảy ra khi x=1
( Mình trình bày mẫu câu a các câu khác mình làm tắt lại nhưng tương tự trình bày câu a nha )
a, Ta có : \(25x^2-20x+7=\left(5x\right)^2-2.5x.2+2^2+3\)
\(=\left(5x-2\right)^2+3\)
Thấy : \(\left(5x-2\right)^2\ge0\forall x\in R\)
\(\Rightarrow\left(5x-2\right)^2+3\ge3\forall x\in R\)
Vậy \(Min=3\Leftrightarrow5x-2=0\Leftrightarrow x=\dfrac{2}{5}\)
b, \(=9x^2-2.3x+1+1=\left(3x-1\right)^2+1\ge1\)
Vậy Min = 1 <=> x = 1/3
c, \(=-x^2+2x-1-1=-\left(x^2-2x+1\right)-1=-\left(x-1\right)^2-1\le-1\)
Vậy Max = -1 <=> x = 1
d, \(=x^2+2.x.6+36+3=\left(x+6\right)^2+3\ge3\)
Vậy Min = 3 <=> x = - 6
e, \(=-x^2-2.x.6-36+36=-\left(x+6\right)^2+36\le36\)
Vậy Max = 36 <=> x = -6 .
f, \(=-x^2+4x-4+5=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\le5\)
Vậy Max = 5 <=> x = 2