Làm tính chia :
a) \(\left(x+y\right)^2:\left(x+y\right)\)
b) \(\left(x-y\right)^5:\left(y-x\right)^4\)
c) \(\left(x-y+z\right)^4:\left(x-y+z\right)^3\)
Phân tích đa thức thành nhân tử :
1) \(A=\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\)
2)\(B=2\left(x^4+y^4+z^4\right)-\left(x^2+y^2+z^2\right)-2\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(x+y+z\right)^4\)
3)\(\left(a+b+c\right)^3-4\left(a^3+b^3+c^3\right)-12abc\)
Cộng các phân thức :
a) \(\dfrac{1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(y-z\right)\left(z-x\right)}+\dfrac{1}{\left(z-x\right)\left(x-y\right)}\)
b) \(\dfrac{4}{\left(y-x\right)\left(z-x\right)}+\dfrac{3}{\left(y-x\right)\left(y-z\right)}+\dfrac{3}{\left(y-z\right)\left(x-z\right)}\)
c) \(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}+\dfrac{1}{y\left(y-z\right)\left(y-x\right)}+\dfrac{1}{z\left(z-x\right)\left(z-y\right)}\)
a) \(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\)
b)\(\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\)
c) A= \(2\left(x^4+y^4+z^4\right)-\left(x^2+y^2+z^2\right)^2-2\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(x+y+z\right)^4\)
Tìm \(x;y;z\in Q\) biết:
a)\(\left|x+\frac{3}{7}\right|+\left|y-\frac{4}{9}\right|+\left|z+\frac{5}{11}\right|=0\)
b)\(\left|x-\frac{2}{5}\right|+\left|x+y-\frac{1}{2}\right|+\left|y-z+\frac{3}{5}\right|=0\)
c)\(\left|x+y-2,8\right|+\left|y+z+4\right|+\left|z+x-1,4\right|=0\)
Giúp mk vs.Ai làm được câu nào thì làm!
hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi
Lí luận chung cho cả 3 câu :
Vì GTTĐ luôn lớn hơn hoặc bằng 0
a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)
b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)
c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)
\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)
\(\Rightarrow2\left(x+y+z\right)=0,2\)
\(\Rightarrow x+y+z=0,1\)
Từ đây tìm đc x, y, z
Câu a,b,c tương tự nhau cả
Vì mỗi tuyệt đối lớn hơn hoặc bằng 0 0 nên 3 tuyệt đối cộng lại với nhau =0
Khi và chỉ khi mỗi tuyệt đối =0
a) làm tính chia
\(\left[5\left(x-y\right)^4-3\left(x-y\right)^3+4\left(x-y\right)^2\right]:\left(y-x\right)^2\)
b) tìm \(x\)
\(\left(4x^4-3x^3\right):\left(-x^3\right)+\left(15x^2+6x\right):3x=0\)
ghi chú: đừng làm tắt được ko ạ?
b: Ta có: \(\left(4x^4-3x^3\right):\left(-x^3\right)+\left(15x^2+6x\right):3x=0\)
\(\Leftrightarrow-4x+3+5x+2=0\)
\(\Leftrightarrow x=-5\)
thực hiện phép tính
a,\(x^3+\left[\frac{x\left(2y^3-x^3\right)}{x^3+y^3}\right]^3-\left[\frac{y\left(2x^3-y^3\right)}{x^3+y^3}\right]^3\)
b,\(\frac{\frac{x\left(x+y\right)}{x-y}+\frac{x\left(x+z\right)}{x-z}}{1+\frac{\left(y-z\right)^2}{\left(x-y\right)\left(x-z\right)}}+\frac{\frac{y\left(y+z\right)}{y-z}+\frac{y\left(y+x\right)}{y-x}}{1+\frac{\left(z-x\right)^2}{\left(y-z\right)\left(y-x\right)}}+\frac{\frac{z\left(z+x\right)}{z-x}+\frac{z\left(z+y\right)}{z-y}}{1+\frac{\left(x-y\right)^2}{\left(z-x\right)\left(z-y\right)}}\)
c,\(\left[\frac{y+z-2x}{\frac{\left(y-z\right)^3}{y^3-z^3}+\frac{\left(x-y\right)\left(x-z\right)}{y^2+yz+z^2}}+\frac{z+x-2y}{\frac{\left(z-x\right)^3}{z^3-x^3}+\frac{\left(y-z\right)\left(y-x\right)}{z^2+xz+x^2}}+\frac{x+y-2z}{\frac{\left(x-y\right)^3}{x^3-y^3}+\frac{\left(z-x\right)\left(z-y\right)}{x^2+xy+y^2}}\right]:\frac{1}{x+y+z}\)
ta có:
(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)-abc\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{1}{9}\left(a+b+c\right)\left(ab+bc+ca\right)=\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\frac{x}{x+yz}+\frac{y}{y+zx}+\frac{z}{z+xy}=\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(y+x\right)\left(y+z\right)}+\frac{z}{\left(z+x\right)\left(z+y\right)}=\frac{2\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\le\frac{9}{4\left(xy+yz+zx\right)}=\frac{9}{4}\)
Rút gọn phân thức
1/\(\frac{x^{3^{ }}-y^{3^{ }}+z^{3^{ }}+3xyz}{\left(x+y\right)^{2^{ }}+\left(y+z\right)^2+\left(z-x\right)^2}\)
2/\(\frac{x^{3^{ }}+y^{3^{ }}+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
3/\(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^3\right)+c^4\left(a^2-b^2\right)}\)
Phân tích đa thức thành nhân tử:
1) \(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\)
2) \(\left(x+y\right)^4+x^4+y^4\)
3) \(\left(x+y\right)^7+\left(y-2\right)^7+\left(z-x\right)^7\)
4) \(\left(x-y\right)^5+\left(y-z\right)^5+\left(z-x\right)^5\)
5) \(\left(x-y\right)^7+\left(y-z\right)^7+\left(z-x\right)^7\)
6) \(8\left(x+y+z\right)^3-\left(x+y\right)^3-\left(y+z\right)^3-\left(z+x\right)^3\)
7) \(x^3+y^4-6xy+8\)
8) \(x^3+y^3+3x^2+3y^2++6x+6y+8\)
9) \(a^3+ac^2-abc+b^2c+b^3\)