Làm tính nhân :
\(2x^2\left(5x^3-4x^2y-7xy+1\right)\)
Thực hiện phép tính:
\(a,\left(2x^3+y^2-7xy\right).4xy^2\)
\(b,\left(2x^3-x-1\right)\left(5x-2\right)\)
\(c,\left(2x^2-3\right)\left(4x^4+6x^2+9\right)\)
\(d,\left(3x^2-2y\right)^3-\left(2x^2-y\right)^3\)
A/\(\left(2x^3+y^2-7xy\right)4xy^2.\)
\(=8x^4y^2+4xy^4-28x^2y^3\)
B/\(\left(2x^3-x-1\right)\left(5x-2\right)\)
\(=10x^4-5x^2-5x-4x^3+2x+2\)
\(=10x^4-5x^3-3x-4x^3+2\)
C/\(\left(2x^2-3\right)\left(4x^4+6x^2+9\right)\)
\(=\left(2x^2-3\right)\left(2x+3\right)^2\)
D/\(\left(3x^2-2y\right)^3-\left(2x^2-y\right)^3\)
( Bài này áp dụng hằng đẳng thức là làm được ạ )
phân tích các đa thức sau thành nhân tử
a) \(9\left(a+b\right)^2-\left(a+b\right)\)
b) \(\left(mx+my\right)+\left(3x+3y\right)\)
c) \(\left(12xy\right)-6x-\left(2y-1\right)\)
d) \(\left(7xy^2-5x^2y\right)+\left(5x-7y\right)\)
e) \(2x\left(x-y\right)-\left(4x-4y\right)\)
9(a + b)2 - (a + b) = (a + b)[9(a + b) - 1]
(mx + my) + (3x + 3y) = m(x + y) + 3(x + y) = (m + 3)(x + y)
(12xy) - 6x - (2y - 1) = 6x(2y - 1) - (2y - 1) = (6x - 1)(2y - 1)
(7xy2 - 5x2y) + (5x - 7y) = xy(7y - 5x) + (5x - 7y) = -xy(5x - 7y) + (5x - 7y) = (-xy + 1)(5x - 7y)
2x(x - y) - (4x - 4y) = 2x(x - y) - 4(x - y) = (2x - 4)(x - y)
a) 9( a + b )2 - ( a + b ) = ( a + b )[ 9( a + b ) - 1 ]
b) ( mx + my ) + ( 3x + 3y ) = m( x + y ) + 3( x + y ) = ( m + 3 )( x + y )
c) 12xy - 6x - ( 2y - 1 ) = 6x( 2y - 1 ) - ( 2y - 1 ) = ( 6x - 1 )( 2y - 1 )
d) ( 7xy2 - 5x2y ) + ( 5x - 7y ) = xy( 7y - 5x ) + ( 5x - 7y ) = -xy( 5x - 7y ) + ( 5x - 7y ) = ( -xy + 1 )( 5x - 7y )
e) 2x( x - y ) - ( 4x - 4y ) = 2x( x - y ) - 4( x - y ) = ( 2x - 4 )( x - y )
Làm tính nhân :
a) \(x^2\left(5x^3-x-\dfrac{1}{2}\right)\)
b) \(\left(3xy-x^2+y\right)\dfrac{2}{3}x^2y\)
c) \(\left(4x^3-5xy+2x\right)\left(-\dfrac{1}{2}xy\right)\)
a) x2(5x3 – x - \(\dfrac{1}{2}\) )= x2. 5x3 + x2 . (-x) + x2 . (-\(\dfrac{1}{2}\))
= 5x5 – x3 – \(\dfrac{1}{2}\)x2
b) (3xy – x2 + y)\(\dfrac{2}{3}\)x2y = \(\dfrac{2}{3}\)x2y . 3xy + \(\dfrac{2}{3}\)x2y . (- x2) + \(\dfrac{2}{3}\)x2y . y
= 2x3y2 – \(\dfrac{2}{3}\)x4y + \(\dfrac{2}{3}\)x2y2
c) (4x3– 5xy + 2x)(- \(\dfrac{1}{2}\)xy) = - \(\dfrac{1}{2}\)xy . 4x3 + (- \(\dfrac{1}{2}\)xy) . (-5xy) + (- \(\dfrac{1}{2}\)xy) . 2x
= -2x4y + \(\dfrac{5}{2}\)x2y2 - x2y.
a) x2 (5x3 - x - \(\dfrac{1}{2}\))
= 5x5 - x3 - \(\dfrac{1}{2}\)x2
b) (3xy - x2 + y) \(\dfrac{2}{3}\)x2y
= 2x3y2 - \(\dfrac{2}{3}\)x4y + \(\dfrac{2}{3}\)x2y2
c) (4x3 - 5xy +2x) (-\(\dfrac{1}{2}\)xy)
= -2x4y + \(\dfrac{5}{2}\)x2y2 - x2y
a. ĐKXĐ: ..
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(2x+5y\right)}-\sqrt{2\left(x+y\right)}=4\\x+2y+\dfrac{2\sqrt{\left(x+y\right)\left(2x+5y\right)}}{3}=24\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2\left(2x+5y\right)}=a\ge0\\\sqrt{2\left(x+y\right)}=b\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-b=4\\\dfrac{a^2+b^2}{6}+\dfrac{ab}{3}=24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=4\\\left(a+b\right)^2=144\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=4\\\left[{}\begin{matrix}a+b=12\\a+b=-12\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(8;4\right)\\\left(a;b\right)=\left(-4;-8\right)\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2\left(2x+5y\right)=64\\2\left(x+y\right)=16\end{matrix}\right.\) \(\Leftrightarrow...\)
b.
Thế pt trên xuống dưới:
\(x^4+6y^4=\left(x+2y\right)\left(x^3+3y^3-2xy^2\right)\)
\(\Leftrightarrow2x^3y-2x^2y^2-xy^3=0\)
\(\Leftrightarrow xy\left(2x^2-2xy-y^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\y=-\left(1+\sqrt{3}\right)x\\y=\left(-1+\sqrt{3}\right)x\end{matrix}\right.\)
Thế vào pt đầu ...
Đề cho hơi xấu, nếu pt đầu là \(x^3+3y^3-2x^2y=1\) thì đẹp hơn nhiều
Thực hiện phép tính:
\(a,\left(2x^3+y^2-7xy\right).4xy^2\)
\(b,\left(2x^3-x-1\right)\left(5x-2\right)\)
\(c,\left(2x^2-3\right)\left(4x^4+6x^2+9\right)\)
\(d,\left(3x^2-2y\right)^3-\left(2x^2-y\right)^3\)
Thực hiện phép tính:
a,(2x3+y2−7xy).4xy2a,(2x3+y2−7xy).4xy2
=>2x3.4xy2+y2.4xy2-7xy.4xy2
=>8x4y2+4xy4-28x2y3
b,(2x3−x−1)(5x−2)
=>10x4-4x3-5x2-3x+2
c: =(2x^2-3)[(2x^2)^2+2x^2*3+3^2]
=8x^6-27
d:\(=\left(3x^2-2y-2x^2+y\right)\left(9x^4-12x^2y+4y^2+6x^4-3x^2y-4x^2y+2y^2+4x^4-4x^2y+y^2\right)\)
\(=\left(x^2-y\right)\left(19x^4-23x^2y+7y^2\right)\)
Tính tổng:
a/ \(\left(-5x^2y+3xy^2+7\right)+\left(-6x^2y+4xy^2-5\right)\)
b/ \(\left(2,4a^3-10a^2b\right)+\left(7a^2b-2,4a^3+3ab^2\right)\)
c/ \(\left(15x^2y-7xy^2-6y^3\right)+\left(2x^3-12x^2y+7xy^2\right)\)
Làm tính nhân \(\left(4x^3+3xy^2-2y^3\right).\left(3x^2-5xy-6y^2\right)\)
Phân tích đa thức thành nhân tử \(10x^3+5x^2y-10x^2y-10xy^2+5y^3\)
Làm tính nhân
(4x3+3xy2-2y3).(3x2-5xy-6y2)
=12x5+12y5-20x4y-36x2y3-8xy4
Phân tích đa thức thành nhân tử
10x3+5x2y-10x2y-10xy2+5y3
=10x3-5x2y-10xy2+5y3
=5(2x3-x2y-2xy2+y3-)
B2 :
a) Làm tính nhân : \(\left(5x^2y-8xy^2+y^3\right)\left(2x^3+x^2y-3y^3\right)\)
b)Phân tích đa thức thành nhân tử :
\(8x^3+4x^2y-2xy^2-y^3\)
\(7x^3-3x^2y-3xy^2-y^3\)
c) CMR : biểu thức sau không phụ thuộc vào x :
\(x\left(x+3\right)^2-\left(x-2\right)^3-3x\left(4x-1\right)\)
d) tìm a để đa thức : \(\left(24x^3+34x^2-13x+a\right)⋮\left(6x+1\right)\)
Bài 2 :
a) \(\left(5x^2y-8xy^2+y^3\right)\left(2x^3+x^2y-3y^2\right)\)
\(=10x^5y+5x^4y^2-15x^2y^3-16x^4y^2-8x^3y^3+24xy^4+2x^3y^3+x^2y^4-3y^5\)
\(=10x^5y-11x^4y^2-6x^3y^3+x^2y^4-15x^2y^3+24xy^4-3y^5\)
Giải hệ pt
\(\left\{{}\begin{matrix}\sqrt{4x+10y}-\sqrt{2x+2y}=4\\x+2y+\dfrac{2\sqrt{2x^2+7xy+5y^3}}{3}=24\end{matrix}\right.\)
Đề có vẻ sai sai. Bạn xem lại đề xem có đúng không?