Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Khánh Linh
Xem chi tiết
Yen Nhi
28 tháng 3 2022 lúc 20:16

`Answer:`

`f(x)=ax^2+bx+c`

Do đa thức `f(x)` có hai nghiệm là `x_1=1;x_2=2` 

`=>(x-1)(x-2)=0`

`<=>x^2-2x-x+2=0`

`<=>x^2-3x+2=0`

Mà `f(x)=ax^2+bx+c`

Đồng nhất hệ số ta được \(\hept{\begin{cases}a=1\\b=-3\\c=2\end{cases}}\)

Khách vãng lai đã xóa
Lê Nguyễn Minh Thư
Xem chi tiết
Nguyễn Minh Quang
3 tháng 5 2021 lúc 9:54

ta có Do x=1 và x=-1 là nghiệm của đa thức nên

\(\hept{\begin{cases}f\left(1\right)=0\\f\left(-1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}a+b-1=0\\a-b-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=2\\b=-1\end{cases}}}}\)

Vậy a=2 và b=-1

Khách vãng lai đã xóa
Thái Từ Khôn
Xem chi tiết
Xyz OLM
27 tháng 8 2020 lúc 16:10

a) Ta có a.1/3 - 1/2 = 0

=> a.1/3 = 1/2

=> a = 3/2

Vậy a = 3/2

b) Ta có : f(1) = a.1 + b = a + b = -3

=> a + b = -3 (1)

Lại có f(2) = a.2 + b = 2 x a + b = 7

=> 2 x a + b = 7 (2)

Khi đó 2 x a + b - (a + b) = 7 - (-3)

=> 2 x a - a = 10

=> a = 10

=> b = -13

Vậy a = 10 ; b = -13

Khách vãng lai đã xóa
Ngoc Han ♪
27 tháng 8 2020 lúc 18:32

a ) Ta có : \(a\cdot\frac{1}{3}-\frac{1}{2}=0\)

\(\Rightarrow a\cdot\frac{1}{3}=\frac{1}{2}\)

\(\Rightarrow a=\frac{3}{2}\)

Vậy \(a=\frac{3}{2}\)

b ) Ta có : \(f\left(1\right)=a\cdot1+b=a+b=-3\)

\(\Rightarrow a+b=-3\)(1)

Lại có : \(f\left(2\right)=a\cdot2+b=2\cdot a+b=7\)

\(\Rightarrow2\cdot a+b=7\)(2)

Khi đó : \(2\cdot a+b-\left(a+b\right)=7-\left(3\right)\)

\(\Rightarrow2\cdot a-a=10\)

\(\Rightarrow a=10;b=-13\)

Vậy ...

Khách vãng lai đã xóa
Hồ Quỳnh Thơ
Xem chi tiết
Huy Hoàng
6 tháng 5 2018 lúc 9:19

Ta có \(f\left(x\right)\)có nghiệm là -1

=> \(f\left(-1\right)=0\)

=> \(\left(-1\right)^3+\left(-1\right)^3a+\left(-1\right)b-2=0\)

=> \(-1-a-b-2=0\)

=> \(-3-a-b=0\)

=> \(-a-b=3\)

=> \(-\left(a-b\right)=3\)

=> \(a-b=-3\)

=> \(a=-3+b\)(1)

và f (x) cũng có nghiệm là 1

=> \(f\left(1\right)=0\)

=> \(1^3+a.1^3+b-2=0\)

=> \(1+a+b-2=0\)

=> \(-1+a+b=0\)

=> \(a+b=1\)(2)

Thế (1) vào (2), ta có:

\(-3+b+b=1\)

=> \(-3+2b=1\)

=> \(2b=1+3\)

=> \(2b=4\)

=> \(b=2\)

=> \(a=-3+2=-1\)

thái thanh oanh
Xem chi tiết
❤  Hoa ❤
14 tháng 4 2018 lúc 18:01

mik nghĩ 

bn có thể tham khảo ở link :

https://olm.vn/hoi-dap/question/902782.html 

~~ hok tốt ~ 

thái thanh oanh
14 tháng 4 2018 lúc 18:04

là ren á bạn

Phùng Minh Quân
14 tháng 4 2018 lúc 18:22

Ta có : 

\(\left(x-1\right)\left(x+3\right)=0\) ( nghiệm của đa thức \(f\left(x\right)\) ) 

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)

Lại có : Nghiệm của đa thức \(f\left(x\right)\) cũng là nghiệm của đa thức \(g\left(x\right)\)  

+) Thay \(x=1\) vào nghiệm của đa thức \(g\left(x\right)=x^3-ax^2+bx-3=0\) ta được : 

\(1^3-a.1^2+b.1-3=0\)

\(\Leftrightarrow\)\(1-a+b-3=0\)

\(\Leftrightarrow\)\(a-b=1-3\)

\(\Leftrightarrow\)\(a-b=-2\) \(\left(1\right)\)

+) Thay \(x=-3\) vào nghiệm của đa thức \(g\left(x\right)=x^3-ax^2+bx-3=0\) ta được : 

\(\left(-3\right)^3-a.\left(-3\right)^2+b.\left(-3\right)-3=0\)

\(\Leftrightarrow\)\(-27-9a+b.\left(-3\right)-3=0\)

\(\Leftrightarrow\)\(9a-3b=-27-3\)

\(\Leftrightarrow\)\(9a-3b=-30\)

\(\Leftrightarrow\)\(\left(-3\right)\left(-3a+b\right)=\left(-3\right).10\)

\(\Leftrightarrow\)\(b-3a=10\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(a-b+b-3a=-2+10\)

\(\Leftrightarrow\)\(-2a=8\)

\(\Leftrightarrow\)\(a=\frac{8}{-2}\)

\(\Leftrightarrow\)\(a=-4\)

Do đó : 

\(a-b=-2\)

\(\Leftrightarrow\)\(-4-b=-2\)

\(\Leftrightarrow\)\(b=2-4\)

\(\Leftrightarrow\)\(b=-2\)

Vậy các hệ số a, b là \(a=-4\) và \(b=-2\)

Chúc bạn học tốt ~ 

Vũ Ngọc Quang
Xem chi tiết
Lục Kim
Xem chi tiết
Trên con đường thành côn...
14 tháng 8 2021 lúc 19:33

undefined

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 2 2021 lúc 15:46

\(f\left(x\right)\) chia \(x+1\) dư -15 \(\Rightarrow f\left(-1\right)=-15\Rightarrow-a+b=-16\)

\(f\left(x\right)\) chia \(x-3\) dư 45 \(\Rightarrow f\left(3\right)=45\Rightarrow3a+b=0\)

\(\Rightarrow\left\{{}\begin{matrix}-a+b=-16\\3a+b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-12\end{matrix}\right.\)

\(f\left(x\right)=x^4-x^3-x^2+4x-12=\left(x^2-4\right)\left(x^2-x+3\right)\)

\(f\left(x\right)=0\Leftrightarrow x^2-4=0\Rightarrow x=\pm2\)

 

Hồng Duyên
Xem chi tiết
Nguyễn Văn Huy
14 tháng 8 2017 lúc 20:16

1. Thay x = -2 vào \(f\left(x\right)\), ta có:

\(\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=\)0

=> -8 + 8 - 2a + 1 = 0

=> -2a +1 = 0

=> -2a = -1

=> a = \(\frac{1}{2}\)

Vậy a = \(\frac{1}{2}\)

2. * Thay x = 1 vào \(f\left(x\right)\), ta có:

1+ 1.a + b = 1 + a + b = 0    ( 1)

* Thay x = 2 vào biểu thức \(f\left(x\right)\), ta có:

22 + 2.a + b =  4 + 2a + b =  0  ( 2)

* Lấy    (2 )   -   ( 1)  , ta có:

 ( 4 + 2a + b ) - ( 1 + a + b ) = 3  + a 

=> 3 + a = 0

=> a = -3

* 1 + a + b = 0 

=> 1 - 3 + b = 0

=> b = -1 + 3 = -2

Vậy a= -3  và b= -2

Nguyễn Vũ Minh Hiếu
8 tháng 4 2019 lúc 20:17

a = -3

b = -2

Hok tốt