Cho đường tròn (O), cung BC có số đo bằng \(120^0\), điểm A di chuyển trên cung lớn BC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC. Hỏi điểm D di chuyển trên đường nào ?
Cho đường tròn (O), cung BC có số đo bằng 120 ° , điểm A di chuyển trên cung lớn BC. Trên tia đối tia AB lấy điểm D sao cho AD = AC. Hỏi điểm D di chuyển trên đường nào?
⇒ D nằm trên cung chứa góc 300 dựng trên đoạn BC.
+ Khi A ≡ C thì D ≡ C, khi A ≡ B thì D ≡ E (BE là tiếp tuyến của đường tròn (O) tại B).
Vậy khi A di chuyển trên cung lớn BC thì D di chuyển trên cung CE thuộc cung chứa góc 30º dựng trên BC.
Cho đường tròn (O), cung BC có số đo bằng 120 ° điểm A di chuyển trên cung lớn BC. Trên tia đối tia AB lấy điểm D sao cho AD = AC. Hỏi điểm D di chuyển trên đường nào?
⇒ D nằm trên cung chứa góc 30 ° dựng trên đoạn BC.
+ Khi A ≡ C thì D ≡ C, khi A ≡ B thì D ≡ E (BE là tiếp tuyến của đường tròn (O) tại B).
Vậy khi A di chuyển trên cung lớn BC thì D di chuyển trên cung CE thuộc cung chứa góc 30 ° dựng trên BC.
cho dường tròn O có cung BC=120 độ .lấy điểm D trên tia đối của AB sao cho AD=AC. hỏi D di chuyển trên Đường nào
Cho đường nửa tròn tâm O, đường kính AB. Các điểm C và D thuộc cung AB sao cho sđ cung CD=90 độ(C thuộc cung AD). Gọi E là giao điểm cỉa AC và BD, K là giao điểm của AD và BC.
Khi cung CD di chuyển trên nửa đường tròn thì điểm K di chuyển trên đường nào?
Cho tam giác đều ABC nội tiếp đường tròn tâm O . M là điểm di chuyển trên cung nhỏ BC . Trên đoạn thẳng AM lấy điểm D sao cho MD = MB
a ) Khi M di chuyển trên cung nhỏ BC thì điểm D di chuyển trên đường nào?
b ) Xác định vị trí của M trên cung nhỏ BC để MA + MB + MC lớn nhất.
Xét \(\Delta MBD\)cân tại M có :
\(\widehat{BDM}=60^0\)
\(\Rightarrow\Delta MBD\)là tam giác đều
\(\Rightarrow\widehat{BDM}=60^0\)
\(\Rightarrow\widehat{BDA}=120^0\)
\(\Rightarrow\)Khi M di chuyển trên cung nhỏ BC thì M di chuyển trên cung tròn ( nằm trên nửa mặt phẳng bờ AB chưa điểm M ) nhìn AB một góc bằng \(120^0\)
Xét \(\Delta DBA\)và \(\Delta MBC\)có :
\(BA=BC\)( vì tam giác ABC đều )
\(\widehat{BAD}=\widehat{BCM}\)( cùng chắn cung BM )
\(\widehat{ABD}=\widehat{CBM}\left(=60^0-\widehat{DBC}\right)\)
Suy ra \(\Delta DBA=\Delta MBC\)
\(\Rightarrow MC=DA\)
\(\Rightarrow MA+MB+MC=MA+MD+DA=2MA\)
\(MA+MB+MC\)lớn nhất khi MA lớn nhất
\(\Rightarrow AM\)là đường kính của \(\left(O\right)\)
\(\Rightarrow M\)là điểm chính giữa của cung BC
Chúc bạn học tốt !!!
Mọi người ơi giúp e vs s, nghĩ mãi mà không ra :V Đề bài : Cho nửa đường tròn tâm O đường kính BC lấy điểm A trên cung BC sao cho AB<AC , D là trung điểm OC từ D kẻ đường vuông góc với BC cắt AC tại E
a, tứ giác ABDE nội tiếp được đường tròn , xác định tâm
b, CM góc BAD = góc BED
c, CM CE.CA = CD.CB
d, trên tia đối của tia AB lấy M sao cho AM = AC . Giả sử không có điều kiện AB<AC , tìm quỹ tích điểm M khi A di chuyển trên nửa đường tròn tâm O.
Cho đường tròn ( O;R ) và dây BC < 2R. A di chuyển trên cung lớn BC sao cho AC > BC. Gọi D là điểm chính giữa cung nhỏ BC. Các tiếp tuyến của ( O ) tại D và C cắt nhau tại E. Tia AB cắt tia CD tại P, tại AD cất tia CE tại Q. AD cắt BC tại K.
1. CM tứ giác APQC nội tiếp
2. CMR AK.AD không đổi khi A di chuyển trên cung lớn BC.
3/ CMR PQ // BC và \(\frac{1}{CE}=\frac{1}{CQ}+\frac{1}{CK}\)
Cho đường tròn tâm O và dây cung BC. Điểm A di chuyển trên cung lớn BC sao cho tam giác ABC có 3 góc nhọn. Đường cao BE, CF của tam giác ABC cắt nhau tại H và cắt đường tròn theo thứ tự tại M và N. Cho cung BC nhỏ có số đo bằng 120 độ. Tính tỉ số diện tích của tam giác AEF và tứ giác BCEF
Cho đường tròn (O:R) có AB là 1 dây cố định (AB<2R) .Trên cung lơn sAB lấy hai điểm C và D sao cho AD//BC
a, kẻ tt tại A và D chứng minh AODI nội tiếp
b,Gọi M là giao điểm của AC và BD .CM M thuộc 1 đường tròn cố định khi C ,D di chuyển trên cung lớn AB sao cho AD//BC
c.Cho biết AB=R căn 2 và BC=R.Tính S ABCD theo R