cho : \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\) và \(M=2y-2y^2+2xy+x^2+2018\)
tìm min của M
Cho \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\)và \(M=2y-2y^2+2xy-x^2+2015\)
Tìm gtnn của M
\(\sqrt{x+2}+x^3=y^3+\sqrt{y+2}\)
nếu x>y =>vt>vp
nếu x<y => vt<vp
nếu x=y => VT=VP
=> x=y
ta có\(M=-x^2+2x+2015=-\left(x-1\right)^2+2016\)
=>M max=2016<=>x=y=1
Bài 1: cho x,y là các số thực thõa mãn \(\sqrt{x+2}-y^3=\sqrt{y+3}-x^3.\)
tìm MIN của \(B=x^2-2y^2+2xy+2y+10\)
Bài 2: cho 3 số thực x,y,z thỏa mãn \(x^2+y^2+z^2=3\)
tìm MAX và MIN của \(P=x+y+2z\)
Bài 1:
ĐK: \(x,y\ge-2\)
Ta có: \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}=0\)
=> x-y=0=>x=y
Thay y=x vào B ta được: B=x2+2x+10\(=\left(x+1\right)^2+9\ge9\forall x\ge-2\)
Dấu '=' xảy ra <=> x+1=0=>x=-1 (tmđk)
Vậy Min B =9 khi x=y=-1
Cho x,y thỏa mãn : M=\(\sqrt{x+2017}-y^2=\sqrt{y+2017}-x^2\)
Tìm giá trị nhỏ nhất của biểu thức : M= \(x^2+2xy-2y^2+2y+2018\)
Cho x,y thỏa mãn \(\sqrt{x+2}-y^{3^{ }}=\sqrt{y+2}-x^3\)
Tìm giá trị B = x2 + 2xy - 2y2 + 2y + 10
bài của bọn mk như này cx khá giống của bạn nên bạn có thể tham khảo :
Cho x,y thỏa √x+2+y3=√y+2+y3
Tìm gtnn của B= x2 +2xy-2y2 +2y+10
GIẢI
√x+2+y3=√y+2+y3 => x=y
ta có : B= x2 + 2xy - 2y2 + 2y + 10 <=> B=x2 +2x2 - 2x2 + 2x + 10
B = x2 + 2x +10
B = (x+1)2 + 9 >= 9 vì (x+1)2 >= 0 với ∀ x
=> min B = 9 <=> x=y=1
Cho 3 số thực không âm x, y,z thỏa mãn x + y + z = 3. Tìm min của
\(A=\sqrt{2x^2+3xy+2y^2}+\sqrt{2y^2+3yz+2z^2}+\sqrt{2z^2+3xz+2x^2}\)
p. tích thành tổng 2 bình phương rồi mincopxki
Dễ chứng minh được \(2x^2+3xy+2y^2\ge\frac{7}{4}\left(x+y\right)^2\)
\(\Leftrightarrow\left(\frac{1}{2}x-\frac{1}{2}y\right)^2\ge0\left(true\right)\)
Một cách tương tự :
\(2y^2+3yz+2z^2\ge\frac{7}{4}\left(y+z\right)^2\)
\(2z^2+3xz+2x^2\ge\frac{7}{4}\left(z+x\right)^2\)
\(\Rightarrow A=\sqrt{2x^2+3xy+2y^2}+\sqrt{2y^2+3yz+2z^2}+\sqrt{2z^2+3xz+2x^2}\)
\(\ge\sqrt{\frac{7}{4}\left(x+y\right)^2}+\sqrt{\frac{7}{4}\left(y+z\right)^2}+\sqrt{\frac{7}{4}\left(z+x\right)^2}\)
\(=\frac{\sqrt{7}}{2}\left(x+y+y+z+z+x\right)=\frac{\sqrt{7}}{2}.6=3\sqrt{7}\)
Cho các số thực x,y thỏa mãn điều kiện: \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\)
Tìm GTNN của biểu thức A=\(x^2+2xy-2y^2+2y+10\)
Nếu bạn đã học phương trình đặc trưng thì khá dễ, chưa học thì chúng ta đành liên hợp:
ĐKXĐ: \(x;y\ge-2\)
\(\sqrt{x+2}-\sqrt{y+2}+x^3-y^3=0\)
\(\Leftrightarrow\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}+\left(x-y\right)\left(\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[\frac{1}{\sqrt{x+2}+\sqrt{y+2}}+\left(x+y\right)^2+\frac{3y^2}{4}\right]=0\)
\(\Leftrightarrow x-y=0\) (ngoặc phía sau luôn dương)
\(\Rightarrow x=y\)
Vậy \(A=x^2+2x^2-2x^2+2x+10=\left(x+1\right)^2+9\ge9\)
\(\Rightarrow A_{min}=9\) khi \(x=y=-1\)
Cho : x,y,z là các số dương thỏa mãn \(\sqrt{x+2}-x^3=\sqrt{x+2}-y^3\)
tìm GTNN của \(x^2+2xy-y^2+2y+2020\)
Bạn coi lại đề, nhìn 2 vế của điều kiên đều là \(\sqrt{x+2}\) có vẻ sai sai rồi đó
Cho x,y thỏa \(\sqrt{x+2}+y^3=\sqrt{y+2}+y^3\)
Tìm gtnn của B= x2 +2xy-2y2 +2y+10
\(\sqrt{x+2}\) +y3=\(\sqrt{y+2}\) +y3
\(\Rightarrow\) x=y
ta co :B=x2+2xy-2y2+2y+10
\(\Leftrightarrow\)B=x2+2x2-2x2+2x+10
B=x2+2x+10
B=(x+1)2+9\(\ge\) 9 vì (x+1)2 \(\ge\) 0 vs \(\forall\) x
\(\Rightarrow\) minB=9 \(\Leftrightarrow\) x=y=-1
cho x,y thỏa mãn \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\).TÌm già trị nhỏ nhất của\(T=x^2+2xy-2y^2+2y+10\)