Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương Anh
Xem chi tiết
TÔ TÚ QUYÊN
Xem chi tiết
Hồ Thu Giang
6 tháng 8 2015 lúc 9:51

M = 40+41+42+....+450

M = (40+41)+(42+43)+....+(449+450)

M = 1.(1+4)+42(1+4)+.....+449(1+4)

M = 1.5 + 42.5 +.......+449.5

M = 5.(1+42+.....+449) chia hết cho 5 (đpcm)

Trần kiên
26 tháng 10 2017 lúc 22:54

Đầu là mũ chẵn cộng mũ lẻ sao cuối lại mũ lẻ cộng mũ chẵn

Phạm Dora
5 tháng 12 2017 lúc 9:47

ai giải thích hộ mình vì sao 4^2 lại nhân với 1+4 đi 

Học 24
Xem chi tiết
Nguyễn Thanh Hằng
25 tháng 9 2017 lúc 18:47

a/ \(A=3+3^2+3^3+3^4+.............+3^{49}+3^{50}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+............+\left(3^{49}+3^{50}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+............+3^{49}\left(1+3\right)\)

\(=3.4+3^3.4+...............+3^{49}.4\)

\(=4\left(3+3^3+...........+3^{49}\right)⋮4\)

\(\Leftrightarrow A⋮4\left(đpcm\right)\)

b/ \(A=3+3^2+3^3+3^4+.............+3^{49}+3^{50}\)

\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^9\right)+........+\left(+3^{47}+3^{48}+3^{49}+3^{50}\right)\)

\(=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+........+3^{47}\left(1+3+3^2+3^3\right)\)

\(=3.40+3^5.40+.........+3^{47}.40\)

\(=40\left(3+3^5+...........+3^{47}\right)⋮10\)

\(\Leftrightarrow A⋮10\left(đpcm\right)\)

Học 24
Xem chi tiết
Nội Nguyễn
25 tháng 9 2017 lúc 19:40

Bạn lấy 1 và 3, 2 và 4, 5 và 7....48 và 50 cộng với nhau có tổng chia hết cho 10 Suy ra a chia hết cho 10

nguyen thi thanh loan
Xem chi tiết
Lê Quang Phúc
25 tháng 9 2017 lúc 18:56

a)\(A=3+3^2+3^3+3^4+...+3^{49}+3^{50}\)

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{49}+3^{50}\right)\)

\(A=3.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{49}.\left(1+3\right)\)

\(A=3.4+3^3.4+...+3^{49}.4\)

\(A=4.\left(3+3^3+...+3^{49}\right)⋮4\)

\(\Rightarrow A=3+3^2+3^3+3^4+...+3^{50}⋮4\left(đpcm\right)\)

b) \(A=3+3^2+3^3+3^4+...+3^{49}+3^{50}\)

\(A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{47}+3^{48}+3^{49}+3^{50}\right)\)

\(A=120+...+3^{46}.\left(3+3^2+3^3+3^4\right)\)

\(A=120+...+3^{46}.120\)

\(A=120.\left(1+...+3^{46}\right)⋮10\)

\(\Rightarrow A=3+3^2+3^3+3^4+...+3^{49}+3^{50}⋮10\left(đpcm\right)\)

Bui Thi Minh Phuong
25 tháng 9 2017 lúc 18:41

chốc mik giải cho mik học bài đã

nguyen thi thanh loan
25 tháng 9 2017 lúc 19:53
Xếp hạng tuầnSiêu sao bóng đáĐiểm SP: 216. Điểm GP: 2. Tổng: 2526Trần Hoàng ViệtĐiểm SP: 96. Điểm GP: 1. Tổng: 1115OoO_Nhok_Lạnh_Lùng_OoOĐiểm SP: 92. Điểm GP: 1. Tổng: 2403Lê Quang PhúcĐiểm SP: 86. Điểm GP: 0. Tổng: 788DespacitoĐiểm SP: 65. Điểm GP: 6. Tổng: 160Ngo Tung LamĐiểm SP: 64. Điểm GP: 3. Tổng: 2691Bùi Tiến VỹĐiểm SP: 60. Điểm GP: 4. Tổng: 470OoO Ledegill2 OoOĐiểm SP: 57. Điểm GP: 3. Tổng: 168o0o Nguyễn Việt Hiếu o0oĐiểm SP: 55. Điểm GP: 1. Tổng: 2750Harry Potter05Điểm SP: 44. Điểm GP: 0. Tổng: 3917Bảng xếp hạng
Nguyễn Trần Như Quỳnh
Xem chi tiết
nguyễn viết tuân
17 tháng 12 2018 lúc 20:31

A=4+4^2+4^3+4^4+...+4^49+4^50

A=(4+4^2)+(4^3+4^4)+...+(4^49+4^50)

A=4.(1+4)+4^3.(1+4)+...+4^49.(1+4)

A=4.5+4^3.5+...+4^49.5

A=5.(4+4^3+...+4^49) chia het cho 5(vi 5 chia het cho 5)

=> A chia het cho 5

Con Chim 7 Màu
17 tháng 12 2018 lúc 21:52

\(A=4+4^2+4^3+4^4+...+4^{49}+4^{50}\)

\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{49}+4^{50}\right)\)

\(A=4.5+4^3.5+...+4^{49}.5\)

\(A=5.\left(4+4^3+...+4^{49}\right)CHIA-HETCHO5\)

Phạm Thu Hà
Xem chi tiết
Akai Haruma
30 tháng 6 lúc 19:37

Bài 1:

Theo đề ra ta có:

$a-2\vdots 3; a-3\vdots 5$

$a-2-2.3\vdots 3; a-3-5\vdots 5$

$\Rightarrow a-8\vdots 3; a-8\vdots 5$

$\Rightarrow a-8=BC(3,5)$

$\Rightarrow a-8\vdots 15$

$\Rightarrow a=15k+8$ với $k$ tự nhiên.

Mà $a$ chia 11 dư 6

$\Rightarrow a-6\vdots 11$

$\Rightarrow 15k+8-6\vdots 11$

$\Rightarrow 15k+2\vdots 11\Rightarrow 4k+2\vdots 11$

$\Rightarrow 4k+2-22\vdots 11\Rightarrow 4k-20\vdots 11$

$\Rightarrow 4(k-5)\vdots 11\Rightarrow k-5\vdots 11$

$\Rightarrow k=11m+5$

Vậy $a=15k+8=15(11m+5)+8=165m+83$ với $m$ tự nhiên.

Vì $a<500\Rightarrow 165m+83<500\Rightarrow m< 2,52$

$\Rightarrow m=0,1,2$

Nếu $m=0$ thì $a=165.0+83=83$

Nếu $m=1$ thì $a=165.1+83=248$

Nếu $m=2$ thì $a=165.2+83=413$

 

Akai Haruma
30 tháng 6 lúc 19:39

Bài 2:

$a=BC(60,85,90)$
$\Rightarrow a\vdots BCNN(60,85,90)$

$\Rightarrow a\vdots 3060$

Mà $a<1000$ nên $a=0$

Akai Haruma
30 tháng 6 lúc 19:43

Bài 3:

$a-2\vdots 3; a-3\vdots 4$

$\Rightarrow a+1\vdots 3$ và $a+1\vdots 4$

$\Rightarrow a+1=BC(3,4)$

$\Rightarrow a+1\vdots 12$

Lại có:

$a-9\vdots 17$ nên $a=17k+9$ với $k$ tự nhiên.

$a+1=17k+10\vdots 12$

$\Rightarrow 5k+10\vdots 12$

$\Rightarrow 5(k+2)\vdots 12$

$\Rightarrow k+2\vdots 12\Rightarrow k=12m-2$ với $m$ tự nhiên.

$\Rightarrow a=17k+9=17(12m-2)+9=204m-25$

$a$ có 3 chữ số

$\Rightarrow 100\leq a\leq 999$

$\Rightarrow 100\leq 204m-25\leq 999$

$\Rightarrow 0,61\leq m\leq 5,01$

$\Rightarrow m\in \left\{1; 2; 3;4; 5\right\}$

$\Rightarrow a\in \left\{179; 383; 587; 791; 995\right\}$

Lưu Dung
Xem chi tiết
Uzimaru Naruto
12 tháng 1 2017 lúc 16:56

Bài 1 :

chứng minh A = 2 + 2^2 + 2^3 + ........... + 2^2009 + 2^2010 chia hết 42

ta thấy 42 = 2 x 3 x  7

A chia hết 42 suy ra A phải chia hết cho 2;3;7

mà ta thấy tổng trên chia hết cho 2 suy ra A chia hết cho 2  (1)

số số hạng ở tổng A là : ( 2010 - 1 ) : 1 + 1 = 2010 ( số )

ta chia tổng trên thành các nhóm mỗi nhóm 2 số ta được số nhóm là : 2010 : 2 = 1005 ( nhóm )

suy ra A = ( 2 + 2^2 ) + ( 2^3 + 2^4 ) + ...............+ ( 2^2009 + 2^2010 )

A = 2 x ( 1 + 2 ) + 2^3 x ( 1 + 2 ) + ................. + 2^2009 x ( 1 + 2 )

A = 2 x 3 + 2^3 x 3 + ............. + 2^2009 x 3 

A = 3 x ( 2 + 2^3 + ........... + 2^2009 ) chia hết cho 3 

suy ra A chia hết cho 3 ( 2 )

ta chia nhóm trên thành các nhóm mỗi nhóm 3 số ta có số nhóm là : 2010 : 3 = 670 ( nhóm )

suy ra A = ( 2 + 2^2 + 2^3 ) + ( 2^4 + 2^5 + 2^6 ) + ................. + ( 2^2008 + 2^2009 + 2^2010 )

A = 2 x ( 1 + 2 + 2^2 ) + 2^4 x ( 1 + 2 + 2^2 ) + .................. + 2^2008 x ( 1 + 2 + 2^2 )

A = 2 x ( 1 + 2 + 4 ) + 2^4 x ( 1 + 2 + 4 ) + ................ + 2^2008 x ( 1 + 2 + 4 )

A = 2 x 7 + 2^4 x 7 + ............. + 2^2008 x 7

A = 7 x ( 1 + 2^4 + ........ + 2^2008 ) chia hết cho 7 

suy ra A chia hết cho 7 (3)

từ (1) ; (2) và (3) suy ra A chia hết cho 2;3;7 

suy ra A chia hết cho 42 ( điều phải chứng minh )

Học 24
Xem chi tiết
Công Chúa Hoa Hướng Dươn...
25 tháng 9 2017 lúc 19:38

A=3+32 +33+34+...+349+350

=(3+32)+(32+33)+...(349+350)

=3.(1+3)+52.(1+3)+.....+349+(1+3)

=3.4+33.4+...+349.4

=4.(3+33+...+349)chia hết cho 4

=> A chia hết cho 4

Nguyen thi quynh anh
12 tháng 5 2019 lúc 17:16

\(A=3+3^2+3^3+...+3^{50}\)

Ta có : \(3+3^2=3.1+3.3=3.\left(1+3\right)=3.4⋮4\)

\(3^3+3^4=3^2.1+3^2.3=3^2.\left(1+3\right)=3^2.4⋮4\)

......... ..... .......... .........

\(3^{49}+3^{50}=3^{49}.1+3^{49}.3=3^{49}.\left(1+3\right)=3^{49}.4⋮4\)

\(\Rightarrow\left\{3+3^2+3^3+3^4...+3^{49}+3^{50}\right\}⋮4\)

\(\Rightarrow A⋮4\)