Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Quoc Hung
Xem chi tiết
Dương Trí Đức
6 tháng 2 2023 lúc 14:15

:0

Lê Minh Hiếu
Xem chi tiết
Hà Anh Thư
Xem chi tiết
Đoàn Đức Hà
23 tháng 5 2021 lúc 0:22

1) \(\left(x^2-4x+3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)

Với \(x=1\)\(0=-1f\left(0\right)\Leftrightarrow f\left(0\right)=0\)do đó \(0\)là một nghiệm của đa thức \(f\left(x\right)\).

Tương tự xét \(x=2,x=3\)có thêm hai nghiệm nữa là \(3\)và \(2\).

Khách vãng lai đã xóa
Đoàn Đức Hà
23 tháng 5 2021 lúc 0:24

2) \(f\left(2\right)=4a-2+b=0\Leftrightarrow4a+b=2\)

Tổng hệ số cao nhất và hệ số tự do là \(a+b\)suy ra \(a+b=-7\).

Ta có hệ: 

\(\hept{\begin{cases}4a+b=2\\a+b=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=9\\b=-7-a\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=-10\end{cases}}\).

Khách vãng lai đã xóa
Nguyễn Mai Quỳnh
Xem chi tiết
Nguyen Ngo
27 tháng 3 2016 lúc 16:07

 x=0 x=1

Nguyễn Ngọc Bảo Minh
Xem chi tiết
Yen Nhi
24 tháng 5 2021 lúc 19:59

1. Cho đa thức f (x) thỏa mãn ( x\(^2\) - 4x + 3) .f ( x + 1 ) = (x - 2).f ( x - 1 ). Chứng tỏ đa thức f (x) có ít nhất 3 nghiệm.

\(\left(x^2-4x+3\right).f\left(x+1\right)=\left(x-2\right).f\left(x-1\right)\)     

\(\text{* Thay}\)\(x=2\)\(,\)\(\text{ta có:}\)

\(\left(2^2-4.2+3\right)f\left(2+1\right)=\left(2-2\right)f\left(2-1\right)\)

\(\rightarrow\left(4-8+3\right)f\left(3\right)=0.f\left(1\right)\)

\(\rightarrow\left(-1\right).f\left(3\right)=0\)

\(\rightarrow f\left(3\right)=0\)

\(\rightarrow x=3\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{* Thay}\)\(x=1\)\(,\)\(\text{ta có:}\)

\(\left(1^2-4.1+3\right)f\left(1+1\right)=\left(1-2\right).f\left(1-1\right)\)

\(\rightarrow\left(1-4+3\right).f\left(2\right)=-1.f\left(0\right)\)

\(\rightarrow0.f\left(2\right)=-1.f\left(0\right)\)

\(\rightarrow0=\left(-1\right).f\left(0\right)\)

\(\rightarrow f\left(0\right)=0\)

\(\rightarrow x=0\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{* Thay}\)\(x=3\)\(,\)\(\text{ta có:}\)

\(\left(3^2-4.3+3\right).f\left(3+1\right)=\left(3-2\right).f\left(3-1\right)\)

\(\rightarrow\left(9-12+3\right).f\left(4\right)=1.f\left(2\right)\)

\(\rightarrow0.f\left(4\right)=1.f\left(2\right)\)

\(\rightarrow0=1.f\left(2\right)\)

\(\rightarrow f\left(2\right)=0\)

\(\rightarrow x=2\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{Vậy ...}\)

Khách vãng lai đã xóa
Trần Lê Phương Anh
Xem chi tiết
Đen Xã Hội
5 tháng 4 2017 lúc 19:59

a, cho f(x) = \(3^2\)-12X = 0

               => X=\(\frac{3^2-0}{12}=\frac{9}{12}=\frac{3}{4}\). Vậy X=\(\frac{3}{4}\)là nghiệm của đa thức.

b, đề chưa rõ k mình cái nha =)

Trần Văn Nghiệp
5 tháng 4 2017 lúc 19:56

a, f(x)=\(3^2\) -12x=0

=>9=12x

=>x=\(\frac{3}{4}\)

b,f(1)=a+b=-2   (1)

f(2)=2a+b=0    (2)

Từ (1) và (2)

=>f(2)-f(1)=2a+b-(a+b)=a=2=0-(-2)=2

a=2

=>a+b=0

=>b=-4

Trần Hằng
Xem chi tiết
noname
8 tháng 4 2016 lúc 21:58

Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng 0. 
Nếu f(a) = 0 => a là nghiệm của f(x). 
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x. 
+ Thay x = 0 vào (1) ta được 
0.f(0 + 1) = (0 + 2).f(0) 
=> 0 = 2.f(0) 
=> f(0) = 0 
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2) 

+ Thay x = -2 vào (1) ta được: 
(-2).f(-2 + 1) = (-2 + 2).f(-2) 
=> (-2).f(-1) = 0.f(-2) 
=> (-2).f(-1) = 0 
=> f(-1) = 0 
=> x = -1 là 1 nghiệm của đa thức trên (3) 
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2

Nguyễn Cẩm Vân
8 tháng 4 2016 lúc 22:03

thay x=0 ta có 0.f(-3)=2f(0)

                      ->2f(0)=0

                     ->f(0)=0 

               nên 0 là 1 nghiệm của f(x)

thay x=-2 ta có-2f(-5)=0.f(x)

                    ->   -2f(-5)=0

                   ->f(-5)=0

             nên -5 là 1 nghiệm của f(x)

   vậy f(x) có it nhất 2 nghiệm

Nguyễn Khánh
8 tháng 4 2016 lúc 22:10

x.f(x-3)=(x+2)f(x)     (1)

Với x=-2, (1) <=> (-2).f(-5)=0.f(-2)

<=>(-2).f(-5)=0

<=>f(-5)=0

=> x=-5 là nghiệm f(x)

Với x=0, (1) <=> 0.f(-3)=2.f(0)

<=> 2.f(0)=0

<=> f(0)=0

=> x=0 là nghiệm f(x)

Vậy f(x) có ít nhất 2 nghiệm là 0; -5

Bùi Hoàng Linh Chi
Xem chi tiết
Nguyễn Hà Vy
Xem chi tiết
Nguyễn Hùng Dũng
2 tháng 5 2021 lúc 13:35
Đéo biết hoặc không biết. ok!!
Khách vãng lai đã xóa