thu gọn biểu thức( x +2)^2-(x+4)^2 + x^2-3x+1
Thu gọn biểu thức sau: (3x-4)^2+2(3x-4)(x-4)+(4-x)^2
\(=\left(3x-4+4-x\right)^2=\left(2x\right)^2=4x^2\)
\(\left(3x-4\right)^2+2\left(3x-4\right)\left(x-4\right)+\left(x-4\right)^2\)
\(=\left(3x-4+x-4\right)^2\)
\(=\left(4x-8\right)^2\)
Bài 1: Thu gọn :
(x+1).(x+2)-3x.(x-4)
Bài 2: Tìm x:
(3x-4).(x-2)=3x.(x-9)
Bài 3: Chứng minh biểu thức không phụ thuộc vào giá trị của biến:
-3x.(x-4).(x-2)-x^2.(-3x+18)+24x-25
1) \(\left(x+1\right)\left(x+2\right)-3x\left(x-4\right)=x^2+3x+2-3x^2+12x=-2x^2+15x+2\)
2) \(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)\)
\(\Leftrightarrow3x^2-10x+8=3x^2-27x\)
\(\Leftrightarrow17x=-8\Leftrightarrow x=-\dfrac{8}{17}\)
3) \(-3\left(x-4\right)\left(x-2\right)-x^2\left(-3x+18\right)+24x-25\)
\(=-3x^3+6x^2+12x^2-24x+3x^3-18x^2+24x-25=-25\)
Thu gọn biểu thức sau:
a) (x+1).(x+2).(x2+4).(x-1).(x2+1).(x-2)
b) (3x+1)2+(2-3x).(2+3x)
a) (x2-1)(x2+4)(x2-4)=(x2-1)(x4-16)
b) 9x2+6x+1+4-9x2= 6x+5
cho biểu thức A=(2-x)^2+2(x-2)(3x+2)+(3x+2)^2
a) thu gọn biểu thức A
b) tính giá trị của biểu thức A với x= -1/2
\(a,A=4-4x+x^2+6x^2-8x-8+9x^2+12x+4\\ A=16x^2\\ b,x=-\dfrac{1}{2}\Leftrightarrow A=16\cdot\dfrac{1}{4}=4\)
a: \(A=x^2-4x+4+9x^2-12x+4+2\left(3x^2+2x-6x-4\right)\)
\(=10x^2-16x+8+6x^2-8x-8\)
\(=16x^2-24x\)
b: \(A=16\cdot\dfrac{1}{4}-24\cdot\dfrac{-1}{2}=4+12=16\)
Tìm TXĐ của biểu thức, rút gọn biểu thức và tìm giá trị của x để biểu thức, thu dọn âm:
(\(\dfrac{x+2}{3x}\) + \(\dfrac{2}{x+1}\) - 3) : \(\dfrac{2-4x}{x+1}\) + \(\dfrac{x^2-3x-1}{3x}\)
TXĐ: \(\left\{{}\begin{matrix}x\in R\\x\notin\left\{0;-1\right\}\end{matrix}\right.\)
A= \(\dfrac{3x^2-12x+12}{x^2-4}\)
a, thu gọn biểu thức A
b, tính giá trị biểu thức A với x=\(\dfrac{-1}{2}\)
a: Ta có: \(A=\dfrac{3x^2-12x+12}{x^2-4}\)
\(=\dfrac{3\left(x^2-4x+4\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{3x-6}{x+2}\)
b: Thay \(x=-\dfrac{1}{2}\) vào A, ta được:
\(A=\left(3\cdot\dfrac{-1}{2}-6\right):\left(-\dfrac{1}{2}+2\right)\)
\(=\left(-\dfrac{3}{2}-6\right):\dfrac{3}{2}\)
\(=\dfrac{-15}{2}\cdot\dfrac{2}{3}=-5\)
Thu gọn biểu thức A=x^4+4xy^2-1+2x^2-x^3-xy^2+3x^3
Câu 1: Thu gọn các biểu thức a) 6x²y(3xy - 2xy² + y) b) (-3x + 2) (5x² - 1 phần 3x + 4) c) ( x + 1)( x - 2) + x( 3 - x)
a: =12x^3y^2-12x^3y^3+6x^2y^2
b: =\(\left(-3x+2\right)\left(5x^2-\dfrac{1}{3}x+4\right)\)
=-15x^3+x^2-12x+10x^2-2/3x+8
=-15x^3+11x^2-38/3x+8
c: =x^2-x-2+3x-x^2
=2x-2
Thu gọn các biểu thức : a) 6x^2y(3xy-2xy^2+y) b) (-3x+2)(5x^2-1/3x+4) c) (x+1)(x-2)+x(3-x) d) (2x+3)^2-(2x-5)(2x+5)-(x-1)(x^12+12)
a: =18x^3y^2-12x^3y^3+6x^2y^2
b: (-3x+2)(5x^2-1/3x+4)
=-12x^3+x^2-12x+10x^2-2/3x+8
=-12x^3+11x^2-38/3x+8
c: =x^2-x-2+3x-x^2
=2x-2
d: =4x^2+12x+9-4x^2+25-(x-1)(x^2+12)
=12x+34-x^3-12x+x^2+12
=-x^3+x^2+46