cho hai đa thức f(x)= ax^2+bx+c và g(x)=cx^2+bx+a . cmr nếu f(x0)=0 thì g(1/x0)=0
Cho hai đa thức f(x)=ax^2+bx+c và g(x)=cx^2+bx+a.Chứng minh rằng: Nếu f(x0)=0 thì g(1/x0)=0 (với x0 khác 0)
2) Cho hai đa thức: f(x) = ax2 + bx + c và g(x) = cx2 + bx + a
Chứng minh rằng: Nếu f(x0) = 0 thì g(1/x0) = 0 (với x0 khác 0)
cho hai đa thức f(X)=AX^2+BX+C VÀ g(X)=CX2+BX+A. chứng minh rằng nếu f(x0)=0 thì g(1/x0)=0
Cho phương trình \(x^3-x-1=0\). Giả sử x0 là một nghiệm của phương trình đã cho.
a)Chứng minh rằng x0>0
b)Tính giá trị biểu thức \(P=\frac{x_0^2-1}{x_{0^3}}.\sqrt{2x^2_0+3x_0+2}\)
\(f\left(x_0\right)=ax_0^2+bx_0+c=0\)
\(g\left(\frac{1}{x_0}\right)=c.\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a=\frac{c+bx_0+ax_0^2}{x_0^2}=\frac{0}{x_0^2}=0\left(đpcm\right)\)
cho hai đa thức :f(x)=\(ax^2\)+bx+c và g (x)=\(cx^2\)+bx+a
cmr nếu f(\(x_0\))=0 thì g(\(\frac{1}{x_0}\))=0 ( với \(x_0\ne\)0)
Với \(x_0\ne0:\)
Nếu \(f\left(x_0\right)=0\Rightarrow ax_0^2+bx_0+c=0\)
Khi đó \(g\left(\frac{1}{x_0}\right)=c\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a=\frac{c+b.x_0+ax_0^2}{x^2_0}=0\)
cho hai đa thức: f(x)=ax2 +bx+c và g(x)=cx2 +bx+a. chứng minh rằng : Nếu f(x0)=0 thì g(1/x0)=0( với x0 khác 0 )
Cho 2 đa thức : f ( x ) = ax2 + bx + c và g ( x ) = cx2 + bx + a
CMR : nếu f ( x0 ) = 0 thì g \(\dfrac{1}{x_0}=0\)
cho hai đa thức
f(x) = ax^2 + bx + c
và g(x)=cx^2 + bx^2+a
chứng minh rằng nếu f( x0)=0 thì g\(\left(\frac{1}{x_0}\right)\)= 0
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
Cho các nhị thức bậc nhất f(x) = ax+b và g(x) =bx+a
Cmr: nếu x0 là nghiệm của f(x) thì 1/x0 là nghiệm của g(x)
Nếu x0 là một nghiệm của f(x) thì \(a.x_0+b=0\Rightarrow a=\dfrac{-b}{x_0}\)
Nếu \(x=\dfrac{1}{x_0}\)
\(\Rightarrow\dfrac{b}{x_0}+a=\dfrac{b}{x_0}+\left(-\dfrac{b}{x_0}\right)=0\)
\(\Rightarrowđpcm.\)