Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hồng Trường
Xem chi tiết
Dương Minh Hoàng
4 tháng 5 2022 lúc 21:06

\(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + ..... + \(\dfrac{2}{95.97}\)

= 1 - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + .... + \(\dfrac{1}{95}\) - \(\dfrac{1}{97}\)

= \(1-\dfrac{1}{97}\) 

= \(\dfrac{96}{97}\)

Phạm Khắc Phương Nam
4 tháng 5 2022 lúc 21:16

\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+...+\dfrac{2}{95\times97}\)

\(=\dfrac{2}{3}\left(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+...+\dfrac{1}{95\times97}\right)\)

\(=\dfrac{2}{3}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{95}-\dfrac{1}{97}\right)\)

\(=\dfrac{2}{3}\left(1-\dfrac{1}{97}\right)\)\(=\dfrac{2}{3}\times\dfrac{96}{97}\)\(=\dfrac{64}{97}\)

 

Sách Giáo Khoa
Xem chi tiết
Go!Princess Precure
16 tháng 5 2017 lúc 14:59

\(M=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)

\(M=2.(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99})\)

\(M=2.\left(\dfrac{1}{3}-\dfrac{1}{99}\right)\)

\(M=2.\dfrac{32}{99}\)

\(M=\dfrac{64}{99}\)

Võ Thiết Hải Đăng
10 tháng 4 2018 lúc 9:07

http://vietjack.com/giai-sach-bai-tap-toan-6/bai-95-trang-28-sach-bai-tap-toan-6-tap-2.jsp

Kien Nguyen
10 tháng 4 2018 lúc 20:00

\(m=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}=\dfrac{1}{3}-\dfrac{1}{99}=\dfrac{32}{99}\)

Như Ý Lê Nguyễn
Xem chi tiết
Ngô Hải Nam
11 tháng 3 2023 lúc 20:24

\(B=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}+\dfrac{2}{99\cdot101}\\ B=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\\ B=\dfrac{1}{1}-\dfrac{1}{101}\\ B=\dfrac{101}{101}-\dfrac{1}{101}\\ B=\dfrac{100}{101}\)

Nguyễn Lâm Tuấn
Xem chi tiết
TV Cuber
14 tháng 4 2022 lúc 18:14

\(=2\cdot\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=2\cdot\left(\dfrac{1}{3}-\dfrac{1}{101}\right)=2\cdot\dfrac{98}{303}=\dfrac{196}{303}\)

ka nekk
14 tháng 4 2022 lúc 18:14

= 2/3 . 2/5 + 2/5 . 2/7 + ... + 2/99 . 2/101

= 2/3 - 2/5 + 2/5 - 2/7 + ... + 2/99 - 2/101

= 2/3 - 2/101

= 196/303

Chuu
14 tháng 4 2022 lúc 18:15

2/3 - 2/5 + 2/5 - 2/7 + 2/7 - 2/9 + .... + 2/97 - 2/99 + 2/99 - 2/101

 = 2/3 - 2/101

= 196/303

Anti Spam - Thù Copy - G...
Xem chi tiết
Xem chi tiết
Ng KimAnhh
19 tháng 3 2023 lúc 15:05

\(B=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)

\(B=\dfrac{1}{1}\cdot\dfrac{1}{3}+\dfrac{1}{3}\cdot\dfrac{1}{5}+\dfrac{1}{5}\cdot\dfrac{1}{7}+...+\dfrac{1}{97}\cdot\dfrac{1}{99}\)

\(B=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)

\(B=\dfrac{1}{1}-\dfrac{1}{99}\)

\(B=\dfrac{99}{99}-\dfrac{1}{99}\)

\(B=\dfrac{98}{99}\)

#YVA

hs 1m
22 tháng 3 2023 lúc 11:57

B=\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)

B=\(\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{97.99}\right):2\)

B=\(\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{97}-\dfrac{1}{99}\right):2\)

B=\(\left(\dfrac{1}{1}-\dfrac{1}{99}\right):2\)

B=\(\dfrac{98}{99}:2\)

B=\(\dfrac{49}{99}\)

Bành Thị Kem Trộn
Xem chi tiết
Hương Giang Vũ
23 tháng 3 2022 lúc 13:06

 = \(\dfrac{5}{2}(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2019}-\dfrac{1}{2021})\)

 = \(\dfrac{5}{2}\left(1-\dfrac{1}{101}\right)\)

 = \(\dfrac{5}{2}.\dfrac{100}{101}\)

 = \(\dfrac{250}{101}\)

 

Khumcotenn
Xem chi tiết
Trầm Huỳnh
14 tháng 3 2023 lúc 11:20

Không có mô tả.

hatsume akiko
Xem chi tiết
Hắc Hường
18 tháng 6 2018 lúc 21:23

Giải:

Biến đổi vế trái BĐT:

\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)

\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}\)

\(=\dfrac{1}{3}-\dfrac{1}{99}\)

\(=\dfrac{32}{99}\)

\(\dfrac{32}{99}>\dfrac{32}{100}\)

\(\Leftrightarrow\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}>\dfrac{32}{100}\)

\(\Leftrightarrow\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}>32\%\)

Vậy ...