chứng tỏ rằng :\(0,5.\left(2013^{2013}-3.2011^{2012}\right)\) là một số nguyên
Chứng minh rằng với mọi số tự nhiên n ta có \(\left(n+2012^{2013}\right)\left(n+2013^{2012}\right)\) chia hết cho 2
Đặt \(A=\left(n+2012^{2013}\right)+\left(n+2013^{2012}\right)\)
\(A=2n+\left(2012^4\right)^{503}.2012+\left(2013^4\right)^{503}\)
\(A=2n+\left(...6\right)+\left(...1\right)\)
Ta có : 2n là số chẵn
\(2012^{2013}\) là số chẵn
\(2013^{2012}\) là số lẻ
\(=>A=2n+2012^{2013}+2013^{2012}\) là số lẻ
Vì A là số lẻ => \(\left(n+2013^{2012}\right);\left(n+2012^{2013}\right)\) sẽ có 1 số chẵn và 1 số lẻ
=> \(\left(n+2012^{2013}\right)\left(n+2013^{2012}\right)\) là số chẵn nên chia hết cho 2 ( đpcm )
Chứng tỏ rằng có một số tự nhiên mà bốn chữ số cuối của số đó là 2012 chia hết cho 2013
Xét dãy 2014 số 2012;20122012;...;20122012...2012(2014 bộ)
Vì có 2014 số mà khi chia cho 2013 chỉ có thể nhận 2013 số dư nên có 2 số trong dãy cùng số dư khi chia cho 2013
Giả sử 2 số đó là 20122012...2012(n bộ;0<n<2015) và 20122012...2012(m bộ;0<m<2015) với n>m
Khi đó 20122012...2012-20122012...2012 chia hết cho 2013
n m
<=>20122012...2012 00...0 chia hết cho 2013
n-m 4m
<=>20122012...2012*(10^(4m)) chia hết cho 2013
Mà (10^(4m);2013)=1
=>20122012...2012 chia hết cho 2013 (đpcm)
Tìm số nguyên \(x\)nhỏ nhất thỏa mãn:
\(\left(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}\right).\left(x-2013\right)>3x-6039\)
Chứng tỏ n+2012 và n+2013 là hai số nguyên tố cùng nhau
chứng tỏ rằng một số tự nhiên mà bốn chữ số cuối của nó là 2012 thì số đó chia hết cho 2013
khung dien ba tron mat tung tao lao
Chứng tỏ rằng với mọi số tự nhiên n ta đều có:
(n+2012^2013)(n+2013^2012) chia hết cho 2
TH1: n = 2k (k thuộc N):
Ta có: (n + 20122013)(n + 20132012) = (2k + 20122013)(2k + 20132012).
Vì: (2k + 20122013) là số chẵn nên suy ra: (2k + 20122013)(2k + 20132012) ⋮ 2 (1)
TH2: n = 2k + 1 (k thuộc N):
Ta có: (n + 20122013)(n + 20132012) = (2k + 1 + 20122013)(2k + 1 + 20132012).
Vì: (2k + 1 + 20132012) là số chẵn nên suy ra: (2k + 20122013)(2k + 20132012) ⋮ 2 (2)
Từ (1) và (2) suy ra: (n + 20122013)(n + 20132012) ⋮ 2.
Chứng minh rằng :Nếu n là số nguyên dương thì :\(2\times\left(1^{2013}+2^{2013}+......+n^{2013}\right)\)) chia hết cho \(n\times\left(n+1\right)\)
Do 2013 là số lẻ nên \(\left(1^{2013}+2^{2013}+3^{2013}+....+n^{2013}\right)⋮\left(1+2+3+....+n\right)\)
Hay \(\left(1^{2013}+2^{2013}+3^{2013}+....+n^{2013}\right)⋮\frac{n\left(n+1\right)}{2}\)
\(\Rightarrow2\left(1^{2013}+2^{2013}+3^{2013}+....+n^{2013}\right)⋮n\left(n+1\right)\) (đpcm)
Vì sao 2013 là số lẻ thì \(1^{2013}+2^{2013}+.....+n^{2013}⋮1+2+3+...+n\)
Vì 20113 là số lẻ nên : \(\left(1^{2013}+2^{2013}+...+n^{2013}\right)⋮\left(1+2+..+n\right)\)
\(\Rightarrow\left(1^{2013}+2^{2013}+...+n^{2013}\right)⋮\frac{n\left(n+1\right)}{2}\)
\(\Rightarrow2\left(1^{2013}+2^{2013}+...+n^{2013}\right)⋮n\left(n+1\right)\)
Vậy ta có đpcm.
chứng tỏ rằng có một số tự nhiên mà bốn chữ số cuối cùng của nó là 2012 thì số đó chia hết cho 2013
So sánh A và B,biết:
\(A=\left(1+\frac{1}{2013}\right)\left(1+\frac{1}{2013^2}\right).....\left(1+\frac{1}{2013^n}\right)\) (với n là số nguyên dương)
\(B=\frac{2013^2-1}{2012^2-1}\)
học trước chương trình ak, mk chưa học đn dạng này