Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kirigaya Kazuto
Xem chi tiết
Yuuki Asuna
19 tháng 11 2016 lúc 15:40

Đặt \(A=\left(n+2012^{2013}\right)+\left(n+2013^{2012}\right)\)
\(A=2n+\left(2012^4\right)^{503}.2012+\left(2013^4\right)^{503}\)

\(A=2n+\left(...6\right)+\left(...1\right)\)

Ta có : 2n là số chẵn

\(2012^{2013}\) là số chẵn

\(2013^{2012}\) là số lẻ

\(=>A=2n+2012^{2013}+2013^{2012}\) là số lẻ

Vì A là số lẻ => \(\left(n+2013^{2012}\right);\left(n+2012^{2013}\right)\) sẽ có 1 số chẵn và 1 số lẻ

=> \(\left(n+2012^{2013}\right)\left(n+2013^{2012}\right)\) là số chẵn nên chia hết cho 2 ( đpcm )

The Sunshine
Xem chi tiết
Đào Minh Nhật
26 tháng 4 2016 lúc 22:14

Xét dãy 2014 số 2012;20122012;...;20122012...2012(2014 bộ)

Vì có 2014 số mà khi chia cho 2013 chỉ có thể nhận 2013 số dư nên có 2 số trong dãy cùng số dư khi chia cho 2013

Giả sử 2 số đó là 20122012...2012(n bộ;0<n<2015) và 20122012...2012(m bộ;0<m<2015) với n>m

Khi đó 20122012...2012-20122012...2012 chia hết cho 2013

                n                   m

<=>20122012...2012  00...0 chia hết cho 2013

         n-m                    4m

<=>20122012...2012*(10^(4m)) chia hết cho 2013

Mà (10^(4m);2013)=1

=>20122012...2012 chia hết cho 2013 (đpcm)

Hiếu Mình Là
Xem chi tiết
Ha Dang Thi Phuong
Xem chi tiết
Nguyễn Thị Hoàng Ngân
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
26 tháng 4 2016 lúc 21:39

Ko bao giờ có điều đó nha ban    

TOC TRUONG THONG THAI
26 tháng 4 2016 lúc 21:45

khung dien ba tron mat tung tao lao

Linh 2k8
Xem chi tiết
 Phạm Trà Giang
6 tháng 2 2020 lúc 21:39

TH1: n = 2k (k thuộc N):

Ta có: (n + 20122013)(n + 20132012) = (2k + 20122013)(2k + 20132012).

Vì: (2k + 20122013) là số chẵn nên suy ra: (2k + 20122013)(2k + 20132012) ⋮ 2    (1)

TH2: n = 2k + 1 (k thuộc N):

Ta có: (n + 20122013)(n + 20132012) = (2k + 1 + 20122013)(2k  + 1 + 20132012).

Vì: (2k + 1 + 20132012) là số chẵn nên suy ra: (2k + 20122013)(2k + 20132012) ⋮ 2    (2)

Từ (1) và (2) suy ra: (n + 20122013)(n + 20132012) ⋮ 2.

Khách vãng lai đã xóa
êfe
Xem chi tiết
Đinh Đức Hùng
16 tháng 2 2018 lúc 17:39

Do 2013 là số lẻ nên \(\left(1^{2013}+2^{2013}+3^{2013}+....+n^{2013}\right)⋮\left(1+2+3+....+n\right)\)

Hay \(\left(1^{2013}+2^{2013}+3^{2013}+....+n^{2013}\right)⋮\frac{n\left(n+1\right)}{2}\)

\(\Rightarrow2\left(1^{2013}+2^{2013}+3^{2013}+....+n^{2013}\right)⋮n\left(n+1\right)\) (đpcm)

êfe
16 tháng 2 2018 lúc 17:45

Vì sao 2013 là số lẻ thì \(1^{2013}+2^{2013}+.....+n^{2013}⋮1+2+3+...+n\)

Bui Đưc Trong
16 tháng 2 2018 lúc 17:48

Vì 20113 là số lẻ nên : \(\left(1^{2013}+2^{2013}+...+n^{2013}\right)⋮\left(1+2+..+n\right)\)

\(\Rightarrow\left(1^{2013}+2^{2013}+...+n^{2013}\right)⋮\frac{n\left(n+1\right)}{2}\)

\(\Rightarrow2\left(1^{2013}+2^{2013}+...+n^{2013}\right)⋮n\left(n+1\right)\)

Vậy ta có đpcm.

Nguyễn Thị Hoàng Ngân
Xem chi tiết
Hoàng Phúc
Xem chi tiết
Devil
11 tháng 3 2016 lúc 20:36

học trước chương trình ak, mk chưa học đn dạng này

Thắng Nguyễn
14 tháng 3 2016 lúc 20:57

cái này đâu fai Bất phương trình