Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Quang
Xem chi tiết
Văn thành
Xem chi tiết
Nham Tien Dat
Xem chi tiết
Vu Ngoc Anh
Xem chi tiết
Vu Ngoc Anh
Xem chi tiết
gta dat
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
10 tháng 1 2021 lúc 9:04

\(P=\frac{x+y}{xyz}=\frac{x}{xyz}+\frac{y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\)

Áp dụng Bunyakovsky dạng phân thức : \(\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{z\left(x+y\right)}\)(1)

Ta có : \(\sqrt{z\left(x+y\right)}\le\frac{x+y+z}{2}\)( theo AM-GM )

=> \(z\left(x+y\right)\le\left(\frac{x+y+z}{2}\right)^2=\left(\frac{6}{2}\right)^2=9\)

=> \(\frac{1}{z\left(x+y\right)}\ge\frac{1}{9}\)=> \(\frac{4}{z\left(x+y\right)}\ge\frac{4}{9}\)(2)

Từ (1) và (2) => \(P=\frac{x+y}{xyz}=\frac{1}{yz}+\frac{1}{xz}\ge\frac{4}{z\left(x+y\right)}\ge\frac{4}{9}\)

=> P ≥ 4/9

Vậy MinP = 4/9, đạt được khi x = y = 3/2 ; z = 3

Khách vãng lai đã xóa
le minh huyen
Xem chi tiết
Nguyễn Minh Quang
Xem chi tiết
Mac Phuong Nga
Xem chi tiết