Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhữ Khánh Linh
Xem chi tiết
Lương Huyền Ngọc
25 tháng 2 2016 lúc 21:52

Lớp 6 mà!

Nguyễn Quốc Khánh
25 tháng 2 2016 lúc 22:24

Vì n là số tự nhiên có 2 chữ số thì \(10\le n\le99\)

=>\(21\le2n+1\le199\)

Vì 2n+1 là số chính phương

=>2n+1=(16;25;36;499;64;81;100;121;169)

n=(12;24;40;60;84)

=>3n+1=(37;73;121;181;253)

Mà 3n+1 là số chính phương

=>3n+1=121

=>n=40

Đỗ Đức Anh
10 tháng 12 2017 lúc 16:04

n=40 la dunggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg

Linh Vi
Xem chi tiết
Trần Văn Thịnh
Xem chi tiết
Đỗ Thanh Huyền
Xem chi tiết
Tường Vy
1 tháng 4 2016 lúc 8:46

a) Một số tự nhiên chẵn có dạng 2k (k(N), khi đó (2k)2 = 4k2 là số chia hết cho 4 còn số tự nhiên lẻ có dạng 2k+1 (k(N) ,

Khi đó (2k+1)2 = 4k2+ 4k +1 là số chia cho 4 dư 1. Như vậy một số chính phương hoặc chia hết cho 4 hoặc chia cho 4 dư 1 , do đó không thể viết đựơc dưới dạng 4n+2 hoặc 4n+3(n(N) 

b) Một số tự nhiên chỉ có thể viết dưới dạng 3k hoặc 3k± 1 (k( N) 
khi đó bình phương của nó có dạng (3k)2 =9k2 là số chia hết cho 3 ,hoặc có dạng (3k± 1) 2 = 9k2 ± 6k +1 là số khi chia cho 3 thì dư 1.
Như vậy một số chính phương không thể viết dưới dạng 3n+2(n(N) ĐPCM.

hoàng minh
1 tháng 4 2016 lúc 10:46

n là số tự nhiên có 2 chữ số nên 10< hoặc = n <100 do đó 21< hoac bang 2n+1<201

2n+1 là số chính phương lẻ nên 2n+1 chỉ có thể nhận 1 trong các giá trị 25;49;81;121;169

suy ra n chỉ có thể nhận 1 trong các giá trị 12;24;40;60;84

suy ra 3n+1 chỉ có thể nhận 1 trong các giá trị 37;73;121;181;253

Trong các số trên chỉ có số 121=11^2 là 1 số chính phương

Vậy số n tự nhiên có 2 chữ số cần tìm là 40

Bí mật
Xem chi tiết

Để giải bài này ta dùng phương pháp chặn em nhé.

Vì n là số tự nhiên có hai chữ số nên 10 ≤ n ≤ 99

⇒ 3 \(\times\) 10 - 2 ≤ 3n - 2 ≤ 3 \(\times\) 99 - 2 

⇒ 28 ≤ 3n - 2 ≤ 295

Vì 3n - 2;  2n - 1 đều  là số chính phương nên ta có:

3n - 2 = m2

2n - 1 = k2 ( k, m \(\in\) N)

Trừ vế với vế ta có  n - 1 = m2 - k2 ⇒ 2(n-1) = 2(m2 - k2)

⇒2n - 1 - 1 = 2m2 - 2k2

⇒ k2 - 1 = 2m2 - 2k2

⇒ 3k2 = 2m2 + 1

⇒ k2 = (2m2 + 1)/3

28 ≤ 3n  - 2 ≤ 295

28 ≤ m2 ≤ 295

⇒ 6 ≤ m ≤ 17 

2m2 + 1 ⋮ 3 ⇒ m2 không chia hết cho 3

⇒ m \(\in\) { 7; 8; 10; 11; 13; 14; 16; 17}

Với m = 7 ⇒ k2 = ( 2.49 + 1)/3 = 33 (loại)

      m = 8 ⇒ k2 = (2.64 +1)/3 = 43 (loại)

      m = 10 ⇒ k2 = (2.100 +1)/3 = 67 (loại)

      m = 11 ⇒ k2 = ( 2. 121 +1)/3 = 81 (thỏa mãn)

     m = 13 ⇒ k2 = ( 2.169 + 1)/3 =113 (loại)

      m = 14 ⇒ k2 = (2. 196 + 1)/3 = 131 (loại)

      m = 16 ⇒ k2 = ( 2.256 +1)/3 = 171 (loại)

     m = 17 ⇒ k2 = (2.289 +1)/3 = 193 (loại)

     Vậy m = 11 ⇒ 3n - 2 = 112 = 121 ⇒ 3n = 121 + 2 = 123

 ⇒ n =  123 : 3 = 41

Kết luận n = 41 

 

 

 

 

 

 

nguyễn khánh hạ
Xem chi tiết
Trần Văn Thuyết
Xem chi tiết
Nguyễn Mai Thiện
1 tháng 3 2016 lúc 7:25

ta có

2n+1= a2

3n+1=b2

=> tự làm tiếp

Lê Thị Mai Trang
Xem chi tiết
CHU ANH TUẤN
Xem chi tiết
Yume Nguyễn
3 tháng 4 2019 lúc 13:03

Ta có: n là số có 2 chữ số

\(\Rightarrow10\le n\le99\)

\(\Rightarrow21\le2n+1\le199\)

Vì 2n + 1 là số chính phương và là số lẻ

\(\Rightarrow2n+1\in\left\{25;49;81;121;169;\right\}\)

\(\Rightarrow n\in\left\{12;24;40;60;84\right\}\)

\(\Rightarrow3n+1\in\left\{37;73;121;181;253\right\}\)

Mà 3n + 1 là số chính phương

=> 3n + 1 = 121

=> n = 40

Vậy n = 40 là giá trị cần tìm

Phạm Tuấn Kiệt
Xem chi tiết
Nguyễn Thị Thanh Trúc
12 tháng 4 2016 lúc 20:33

Ta có: n là số tự nhiên có 2 chữ số

=> 10 \(\le\) n \(\le\) 99

=> 21 \(\le\) 2n+1 \(\le\) 199

Mà 2n+1 là số chính phương  nên

     2n+1 \(\in\) {16;25;36;49;64;81;100;121;169}

   =>   n \(\in\)  {12;24;40;60;84}

   => 3n+1 \(\in\) {37;73;121;181;253}

Mà 3n+1 là số chính phương nên 3n+1=121

=> n=40