3a+5b=12 tim GTNN cua ab
Tim gtln cua ab biet 3a+5b=12
cho a+b+ab=3.tim gtnn cua m=a^2+b^2
giai nhanh giup mik nhe:(
cho 2a^2+2b^2+4c^2+3 ab+ac+2bc=1,5. Tim GTNN, GTLN cua a+b+c+2012
cho cac so duong a,b,c thoa man : ab+a+b=3
tim GTNN cua bieu thuc C=a^2+b^2
Cho a,b>0,a+b=1.Tim GTNN cua A=\(\frac{3}{a^2+b^2}+\frac{2}{ab}\)
\(A=\frac{3}{a^2+b^2}+\frac{2}{ab}\)
\(=\frac{3}{a^2+b^2}+\frac{4}{2ab}\ge\frac{\left(\sqrt{3}+2\right)^2}{\left(a+b\right)^2}\)(cauchy-schwarz dạng engel)
\(=7+4\sqrt{3}\)
tim GTNN cua D=\(\frac{-15.\left|x+7\right|-68}{3.\left|x+7\right|+12}\)
Ta có:
|x+7|\(\ge\)0
Dấu "=" xảy ra \(\Leftrightarrow\)|x+7|=0
\(\Leftrightarrow\)x+7=0
\(\Leftrightarrow\)x=-7
Thay x=-7 vào M ta được:
MinD=\(\frac{-15.\left(-7\right)-68}{3.\left(-7\right)+12}\)
=\(\frac{105-68}{-21+12}\)
=\(\frac{37}{-9}\)
Vậy MinD=\(\frac{37}{-9}\)\(\Leftrightarrow\)x=-7.
cho a,b>0.Tim GTNN cua \(P=\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}.\)
áp dụng bdt cô-si ta có P\(\ge\)2
dấu = xảy ra khi (a+b)2=ab
\(\text{Giải}\)
\(P=\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\)
Ấp dụng BĐT Cô-si ta có:
\(a+b\ge2\sqrt{ab}\)
\(P=\frac{a+b}{4\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}+\frac{a+b}{\sqrt{ab}}.\frac{3}{4}\)
\(\text{ÁP DỤNG BĐT Cô-si Ta đc:}\)\(\frac{a+b}{4\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\ge2\sqrt{\frac{\left(a+b\right)\left(\sqrt{ab}\right)}{4\sqrt{ab}\left(a+b\right)}}=1\)
Theo BĐT Cô si ta đc:\(\frac{3}{4}.\frac{a+b}{\sqrt{ab}}\ge\frac{3}{4}.2=\frac{3}{2}\)
\(\Rightarrow P_{min}=\frac{3}{2}.\text{Dấu "=" xảy ra khi: a=b}\)
Cho x+y=z=3;\(A=x^2+y^2+z^2;B=xy+yz+xz\) a) C/M:\(A\ge B\) b) tim GTNN cua A c)tim GTLN cua B d) timf GTNN cua A+B
a) Áp dụng bđt AM-GM: \(+\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2zx\end{cases}}\)\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\left(đpcm\right)\)
Dấu "=" xay ra khi \(x=y=z\)
b) Bổ đề; \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)
Áp dụng : \(A=x^2+y^2+z^2\ge\frac{3^2}{3}=3\). Dấu "=" xảy ra khi \(x=y=z=1\)
c) Bổ đề: \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)
Áp dụng: \(B\le\frac{3^2}{3}=3\). Dấu "=" xảy ra khi \(x=y=z=1\)
d) \(A+B=x^2+y^2+z^2+xy+yz+zx=\left(x+y+z\right)^2-\left(xy+yz+zx\right)\)
\(\ge\left(x+y+z\right)^2-\frac{\left(x+y+z\right)^2}{3}\)
\(=\frac{2}{3}\left(x+y+z\right)^2=6\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Bài này tuy dễ nhưng hơi loằng ngoằng giữa các câu :))
a. Cách phổ thông : x2 + y2 + z2\(\ge\)xy + yz + zx
<=> 2 ( x2 + y2 + z2 )\(\ge\)2 ( xy + yz + zx )
<=> ( x2 - 2xy + y2 ) + ( y2 - 2yz + z2 ) + ( z2 - 2zx + x2 )\(\ge\)0
<=> ( x - y )2 + ( y - z )2 + ( z - x )2\(\ge\)0 ( * )
Vì ( x - y )2 \(\ge\)0 ; ( y - z )2 \(\ge\)0 ; ( z - x )2\(\ge\)0\(\forall\)x ; y ; z
=> ( * ) đúng
=> A\(\ge\)B ; dấu "=" xảy ra <=> x = y = z
b. Xài Cauchy cho mới
( x2 + y2 + z2 ) ( 12 + 12 + 12 )\(\ge\)( x + y + z )2 = 32 = 9
<=> 3 ( x2 + y2 + z2 )\(\ge\)9
<=> x2 + y2 + z2\(\ge\)3
Dấu "=" xảy ra <=> x = y = z = 1
Vậy minA = 3 <=> x = y = z = 1
c. Theo câu a và câu b ta có : 3 ( xy + yz + zx )\(\le\)( x + y + z )2 = 32 = 9
<=> xy + yz + zx\(\le\)3
Dấu "=" xảy ra <=> x = y = 1
Vậy maxB = 3 <=> x = y = 1
d. x + y + z = 3 . BP 2 vế ta được
x2 + y2 + z2 + 2( xy + yz + zx ) = 9
Hay A + 2B = 9 . Mà B\(\le\)3 ( câu b )
=> A + B \(\ge\)6
Dấu "=" xảy ra <=> x = y = z = 1
Vậy min A + B = 6 <=> x = y = z = 1
b) Cái này là bạn đang chứng minh dùng CBS mà ?
cho a,b,c la cac so thoa man (a+1)^2+(b+2)^2+(c+3)2<2010.tim GTNN cua bieu thuc A=ab+b(c-1)+c(a-2)