Chứng minh rằng : 22002 - 4 chia hết cho 31 ( giải bằng đồng dư )
Chứng minh rằng:
22002 __ 4 chia hết cho 31
chứng minh \(70\times27^{1001}+31\times38^{101}\)chia hết cho 13 (giải bằng 2 cách (trong đó có 1 cách dùng đồng dư)
Chứng minh bằng đồng dư thức :
22002 - 4 chia hết cho 31
chtt
các bạn cho mk vài li-ke cho tròn 600 với
Ta có:
22000=(25)400 =32400
Lại có:
32400-1= 32400-1400 chia hết cho (32-1)
(áp dụng t/c an-bn chia hết cho (a-b) với mọi n)
=>32400-1 chia hết cho 31
=>4.(32400-1) chia hết cho 31
=>4.32400-1 .4 chia hết cho 31
=>22.2200-4 chia hết cho 31
=>22002 chia hết cho 31 (đpcm)
chứng minh rằng:
21995-1 chia hết cho 31
(làm bằng cách đồng dư nhé)
2^1995 - 1 = ( 2^5)^399 = 32^399 -1
Ma 32 dong du vs 1( mod 31 )
=> 32^399 dong du vs 1( mod 31 )
=> 32^399 dong du vs 0( mod 31 )
=> 2^1995 - 1 chia het cho 31 ( dpcm )
Ta có: \(2^{1995}=\left(2^5\right)^{399}=32^{399}⋮32\)
Mà \(32\equiv1\)(mod 31)
\(\Rightarrow2^{1995}\equiv1\)(mod 31)
\(\Rightarrow2^{1995}-1⋮31\)(đpcm)
Ta có : \(2^{1995}=2^{1990}\cdot2^5=2^{1990}\cdot32\)
Vì \(32\div31\)dư 1 \(\Rightarrow32\cdot2^{1990}⋮31\)
vạy \(2^{1995}-1⋮31\)
a) chứng minh : 10 mũ 10 + 4 chia hết cho 5
b) chứng minh : 10 mũ 100 + 14 chia hết cho 3
GIẢI BẰNG PHƯƠNG PHÁP ĐỒNG DƯ
CẢM ƠN CÁC BẠN
a) bạn ghi sai đề
b) Ta có\(10\equiv1\left(mod3\right)\)
\(\Rightarrow10^{100}\equiv1\left(mod3\right)\)
\(\Rightarrow10^{100}+14\equiv15\left(mod3\right)\)
Mà\(15\equiv0\left(mod3\right)\)
\(\Rightarrow10^{100}+14\equiv0\left(mod3\right)\)
\(\Rightarrow10^{100}+14⋮3\)
Chứng minh 22002 - 4 chia hết cho 31
( Sử dụng phương pháp đồng dư )
25 = 32 = 1 (mod 31)
=> (25)400 = 1400 = 1 (mod 31)
=> 22000 = 1 (mod 31)
=> 22000.22 = 22 (mod 31)
=> 22002 = 4 (mod 31)
=> 22002 - 4 = 0 (mod 31)
Vậy...
2222 ≡ 3 (mod 7) ; 3³ ≡ -1 (mod 7) ; chú ý: 5555 = 3*1851 + 2
=> 2222^5555 ≡ 3^5555 ≡ (3³)^1851.3² ≡ (-1)^1851.9 ≡ -9 ≡ -2 ≡ 5 (mod 7)
5555 ≡ 4 (mod 7) ; 4³ ≡ 1 (mod 7) ; 2222 = 3*740 + 2
=> 5555^2222 ≡ 4^2222 ≡ (4³)^740.4² ≡ (1).16 ≡ 2 (mod 7)
vậy: 2222^5555 + 5555^2222 ≡ 5+2 ≡ 0 (mod 7) => đpcm
Chứng minh rằng:
\(2^{1995}-1\)chia hết cho \(31\)
ĐỒNG DƯ THỨC
\(2^{1995}-1=A=1+2+2^2+2^3+2^4...+2^{1994}\)
\(\left(1+2+2^2+2^3+2^4\right)=31\) chia hết cho 31
Số số hạng của A là 1995 chia hết cho 5
\(A=31.\left(1+2^5+2^{10}+..+2^{\frac{1995}{5}-5}\right)\)=> DPCM
chứng minh rằng :
11^10 - 1 chia hết cho 100 ( giải theo đồng dư thức)
11^10-1
=(...1)-1
=(..0) chia hết cho 10
ê mấy bn đề bài bảo chứng mik chia hết cho 100 mà
Mình chỉ biết chia hết vs 10 thui nha còn 100 thì chắc là không bao giờ xảy ra đối vs đề này.
11 đồng dư vs 1 (mod 10)
=> 11^10 đồng dư với 1 (mod 10)
=> 11^10 -1 chia hết cho 10 (đpcm)
a) Chứng minh: B = 31 + 32 + 33 + 34 + … + 32010 chia hết cho 4.
b) Chứng minh: C = 51 + 52 + 53 + 54 + … + 52010 chia hết cho 31.
c) Cho S=17+52+53+54+ ... +52010 . Tìm số dư khi chia S cho 31.
\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4.\left(3+3^3+...+3^{2009}\right)\)
⇒ \(B\) ⋮ 4
b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)