Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Viên Lê văn
Xem chi tiết
Nguyễn Việt Anh
Xem chi tiết
Vũ Lê Ngọc Liên
Xem chi tiết
Vongola Tsuna
29 tháng 12 2015 lúc 11:47

chtt

các bạn cho mk vài li-ke cho tròn 600 với 

Edogawa Conan
29 tháng 12 2015 lúc 11:51

ai tích mình mình tích lai liền ak

Cô Nàng Lạnh Lùng
29 tháng 12 2015 lúc 12:18

Ta có:

22000=(25)400 =32400

Lại có:

32400-1= 32400-1400 chia hết cho (32-1)

(áp dụng t/c an-bn chia hết cho (a-b) với mọi n)

=>32400-1 chia hết cho 31

=>4.(32400-1) chia hết cho 31

=>4.32400-1 .4 chia hết cho 31

=>22.2200-4 chia hết cho 31

=>22002 chia hết cho 31 (đpcm)

Bích Nguyễn Ngọc
Xem chi tiết
Never_NNL
21 tháng 5 2018 lúc 19:14

2^1995 - 1 = ( 2^5)^399 = 32^399 -1

Ma 32 dong du vs 1( mod 31 )

=> 32^399 dong du vs 1( mod 31 )

=> 32^399 dong du vs 0( mod 31 )

=> 2^1995 - 1 chia het cho 31 ( dpcm ) 

Nguyễn Văn Anh Kiệt
21 tháng 5 2018 lúc 19:15

Ta có: \(2^{1995}=\left(2^5\right)^{399}=32^{399}⋮32\)

Mà \(32\equiv1\)(mod 31)

\(\Rightarrow2^{1995}\equiv1\)(mod 31)

\(\Rightarrow2^{1995}-1⋮31\)(đpcm)

           

Trần Cao Vỹ Lượng
21 tháng 5 2018 lúc 19:50

Ta có : \(2^{1995}=2^{1990}\cdot2^5=2^{1990}\cdot32\)

Vì \(32\div31\)dư 1 \(\Rightarrow32\cdot2^{1990}⋮31\)

vạy \(2^{1995}-1⋮31\)

thiên thần vui vẻ
Xem chi tiết
pham trung thanh
3 tháng 10 2017 lúc 20:07

a) bạn ghi sai đề

b) Ta có\(10\equiv1\left(mod3\right)\)

\(\Rightarrow10^{100}\equiv1\left(mod3\right)\)

\(\Rightarrow10^{100}+14\equiv15\left(mod3\right)\)

\(15\equiv0\left(mod3\right)\)

\(\Rightarrow10^{100}+14\equiv0\left(mod3\right)\)

\(\Rightarrow10^{100}+14⋮3\)

Kaneki Ken
Xem chi tiết
Trần Thị Loan
20 tháng 10 2015 lúc 21:30

25 = 32 = 1 (mod 31)

=> (25)400 = 1400 = 1 (mod 31)

=> 22000 = 1 (mod 31)

=> 22000.22 = 2(mod 31)

=> 22002 = 4 (mod 31)

=> 22002 - 4 = 0 (mod 31)

Vậy... 

Thanh Hiền
20 tháng 10 2015 lúc 20:57

Bạn vào câu hỏi tương tự nhé !!!

Nguyễn Thị Thu Hiền
20 tháng 10 2015 lúc 20:58

  2222 ≡ 3 (mod 7) ; 3³ ≡ -1 (mod 7) ; chú ý: 5555 = 3*1851 + 2 
=> 2222^5555 ≡ 3^5555 ≡ (3³)^1851.3² ≡ (-1)^1851.9 ≡ -9 ≡ -2 ≡ 5 (mod 7) 

5555 ≡ 4 (mod 7) ; 4³ ≡ 1 (mod 7) ; 2222 = 3*740 + 2 
=> 5555^2222 ≡ 4^2222 ≡ (4³)^740.4² ≡ (1).16 ≡ 2 (mod 7) 

vậy: 2222^5555 + 5555^2222 ≡ 5+2 ≡ 0 (mod 7) => đpcm 

 

Nguyễn Nhật Linh
Xem chi tiết
ngonhuminh
12 tháng 1 2017 lúc 17:55

\(2^{1995}-1=A=1+2+2^2+2^3+2^4...+2^{1994}\)

\(\left(1+2+2^2+2^3+2^4\right)=31\) chia hết cho 31

Số số hạng của A là 1995 chia hết cho 5 

\(A=31.\left(1+2^5+2^{10}+..+2^{\frac{1995}{5}-5}\right)\)=> DPCM

Lê Thị Ngọc Tú
Xem chi tiết
Biện Văn Hùng
22 tháng 12 2014 lúc 19:53

11^10-1

=(...1)-1

=(..0) chia hết cho 10

nguyen tuan anh
1 tháng 3 2015 lúc 20:40

ê mấy bn đề bài bảo chứng mik chia hết cho 100 mà

 

Trần Ngọc Hiếu
7 tháng 3 2015 lúc 21:47

Mình chỉ biết chia hết vs 10 thui nha còn 100 thì chắc là không bao giờ xảy ra đối vs đề này.

11 đồng dư vs 1 (mod 10)

=> 11^10 đồng dư với 1 (mod 10)

=> 11^10 -1 chia hết cho 10 (đpcm)

Thư Đỗ Ngọc Anh
Xem chi tiết
Minh Hiếu
28 tháng 12 2021 lúc 20:44

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

Nguyễn Lê Phước Thịnh
29 tháng 12 2021 lúc 22:00

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)