Chứng minh rằng:
a) Cho hai phân số: 1 n và 1 n + 1 (n ∈ Z, n > 0)
Hãy so sánh tích của hai phân số và hiệu của hai phân số trên.
b) Áp dụng kết quả trên để tính giá trị biểu thức sau:
M = 1 3.4 + 1 4.5 + 1 5.6 + 1 6.7 + 1 7.8 + 1 8.9 + 1 9.10 + 1 10.11
a)
1 n . 1 n + 1 = 1 n ( n + 1 ) 1 n − 1 n + 1 = n + 1 − n n ( n + 1 ) = 1 n ( n + 1 ) ⇒ 1 n . 1 n + 1 = 1 n − 1 n + 1
b) Áp dụng kết quả trên để tính giá trị biểu thức sau:
M = 1 3.4 + 1 4.5 + 1 5.6 + 1 6.7 + 1 7.8 + 1 8.9 + 1 9.10 + 1 10.11 M = 1 3 − 1 4 + 1 4 − 1 5 + 1 5 − 1 6 + 1 6 − 1 7 + 1 7 − 1 8 + 1 8 − 1 9 + 1 9 − 1 10 + 1 10 − 1 11 M = 1 3 − 1 11 M = 8 33
b) B= 19.10−18.9−17.8−...−12.3−11.2
Tính nhanh: B = 1 9.10 − 1 8.9 − 1 7.8 − ... 1 2.3 − 1 1.2
Ta có: B = 1 9.10 − 1 1.2 + 1 2.3 + ... + 1 7.8 + 1 8.9 = > B = − 79 90
Kết luận đúng về giá trị của biểu thức B = 1 2 . 3 + 1 3 . 4 + 1 4 . 5 + 1 5 . 6 + 1 6 . 7 là
A. B < 0
B. B < 1/2
C. B > 1
D. B > 2
Tính giá trị của biểu thức A = 1 1 . 2 + 1 2 . 3 + . . . + 1 6 . 7 + 1 7 . 8
A. A = 1 2
B. A = 5 8
C. A = 3 4
D. A = 7 8
a) Chứng tỏ rằng với n ∈ ℕ , n ≠ 0 t h ì 1 n ( n + 1 ) = 1 n − 1 n + 1
b) Sử dụng kết quả của ý a) để tính nhanh: 1 1.2 + 1 2.3 + 1 3.4 + ... + 1 9.10
a ) 1 n ( n + 1 ) = n + 1 − n n ( n + 1 ) = n + 1 n ( n + 1 ) − n n ( n + 1 ) = 1 n − 1 n + 1
b ) 1 1.2 + 1 2.3 + ... 1 9.10 = 1 1 − 1 2 + 1 2 − 1 3 + ... + 1 9 − 1 10 = 9 10
a) Chứng tỏ rằng với n ∈ ℕ , n ≠ 0 thì 1 n ( n + 1 ) = 1 n − 1 n + 1
b) Sử dụng kết quả của ý a) để tính nhanh: 1 1.2 + 1 2.3 + 1 3.4 + ... + 1 9.10
a ) 1 n ( n + 1 ) = n + 1 − n n ( n + 1 ) = n + 1 n ( n + 1 ) − n n ( n + 1 ) = 1 n − 1 n + 1
b ) 1 1.2 + 1 2.3 + ... 1 9.10 = 1 1 − 1 2 + 1 2 − 1 3 + ... + 1 9 − 1 10 = 9 10
Tập hợp các giá trị nguyên dương của x thỏa mãn:$\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)x<\frac{13}{7}$(11.2 +12.3 +13.4 +14.5 +15.6 +16.7 )x<137 có số phần tử là...........
Câu hỏi tương tự Đọc thêm
Toán lớp 7
Áp dụng kết quả ở câu a) để tính nhanh:
A = 1 1 . 2 + 1 2 . 3 + 1 3 . 4 + . . . + 1 9 . 10
A = 1 - 1 2 + 1 2 - 1 3 + 1 3 - 1 4 + . . . + 1 9 - 1 10 A = 1 - 1 10 = 9 10
Chứng minh rằng: 1 1.2 + 1 3.4 + 1 5.6 + ... + 1 49.50 = 1 26 + 1 27 + 1 28 + ... + 1 50
Ta có:
1 1.2 + 1 3.4 + 1 5.6 + ... + 1 49.50
= 1 − 1 2 + 1 3 − 1 4 + 1 5 − 1 6 + ⋯ ⋯ + 1 49 − 1 50 = 1 + 1 3 + 1 5 + ⋯ ⋯ + 1 49 − 1 2 + 1 4 + 1 6 + ⋯ ⋯ + 1 50 = 1 + 1 2 + 1 3 + 1 4 + 1 5 + ⋯ ⋯ + 1 50 − 2. 1 2 + 1 4 + 1 6 + ⋯ ⋯ + 1 50 = 1 + 1 2 + 1 3 + 1 4 + 1 5 + ⋯ ⋯ + 1 50 − 1 + 1 2 + 1 3 + ⋯ ⋯ + 1 25 = 1 26 + 1 27 + 1 28 + ... + 1 50 ( d p c m )