Bài 1:
Cho ∆ ABC, biết trung tuyến BM và đường cao BH chia ∆ABC thành ba phần bằng nhau. Hãy tính số đo mỗi gói của ∆ ABC.
Bài 2:
Chứng minh rằng trong 1 ∆ có 2 cạnh không bằng nhau, đường cao hạ xuống cạnh bé lớn hơn đường cao hạ xuống cạnh lớn
a)Cho tam giác ABC.Biết rằng đường cao AH và đường trung tuyến AM chia góc A thành 3 phần bằng nhau, hãy tính các góc của tam giác ABC?
b) Cho biết BH=2cm, Tính các cạnh của tam giác ABC
cho tam giác ABC có đường cao AH và trung tuyến AM chia góc A thành ba phần bằng nhau . CHứng minh rằng Tam giác ABC vuông và ABM đêu
Xét ΔABM có AHvừa là đường cao, vừa là phân giác
nên ΔABM cân tại A
=>H là trung điểm của BM
Xét ΔAHC có AM là phân giác
nên AH/AC=CM/MH=CM/2MB=CM/2MC=1/2
Xet ΔAHC vuông tại H có sin ACH=AH/AC=1/2
nên góc ACH=30 độ
=>góc HAC=60 độ
=>góc BAH=1/2*góc HAC=30 độ
=>góc BAC=90 độ
=>ΔABC vuông tại A
Xét ΔABC vuông tại A có góc B+góc C=90 độ
=>góc B=60 độ
mà ΔAMB cân tại A
nên ΔAMB đều
Xét ΔABM có AHvừa là đường cao, vừa là phân giác
nên ΔABM cân tại A
=>H là trung điểm của BM
Xét ΔAHC có AM là phân giác
nên AH/AC=CM/MH=CM/2MB=CM/2MC=1/2
Xet ΔAHC vuông tại H có sin ACH=AH/AC=1/2
nên góc ACH=30 độ
=>góc HAC=60 độ
=>góc BAH=1/2*góc HAC=30 độ
=>góc BAC=90 độ
=>ΔABC vuông tại A
Xét ΔABC vuông tại A có góc B+góc C=90 độ
=>góc B=60 độ
mà ΔAMB cân tại A
nên ΔAMB đều
Bài 1 : Cho tam giác ABC cân tại A.Chứng minh hai đường trung tuyến, hai đường cao vẽ từ đỉnh B và C bằng nhau.
Bài 2 : Cho tam giác ABC vuông tại A có đường cao AH bằng 2 cm. Tính các cạnh của tam giác ABC biết BH bằng 1 cm, HC bằng 3 cm.
Mấy bạn giải chi tiết hộ mik với ạ.
Mong các bạn giải hộ mik sớm nhất có thể.Cảm ơn!
Cho tam giác ABC có góc BAC bằng 105o, đường phân giacstrong CD và đường trung tuyến BM cắt nhau tại K thỏa mãn KB = KC. Gọi H là chân đường cao hạ từ A của tam giác ABC. a. Chứng minh rằng HA = HB b. Tính góc ABC và góc ACB.’
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
1. Cho tam giác ABC có AB = AC. Chứng minh rằng hai đường cao BH, CK bằng nhau.
2.Cho tam giác ABC có trung tuyến AM bằng \(\dfrac{1}{2}\)cạnh BC. Chứng minh tam giác ABC vuông.
Ta có: \(\Delta\)ABC có AB=AC
\(\Rightarrow\)\(\Delta\)ABC cân tại A
\(\Rightarrow\)\(\widehat{KBC}\)\(=\)\(\widehat{HCB}\)
Xét hai \(\Delta\)vuông CKB và BHC có:
BC là cạnh huyền chung (gt)
\(\widehat{KBC}\)\(=\)\(\widehat{HCB}\) (cmt)
\(\Rightarrow\)\(\Delta\)CKB\(=\)\(\Delta\)BHC (ch-gn)
\(\Rightarrow\)BH=CK(hai cạnh tương ứng)
\(\Rightarrow\)dpcm
Giải
Ta có hình vẽ:
Xét 2 \(\Delta BHA\) và \(\Delta CKA\). Có:
góc A chung
Góc H1 = K1
AB=AC
\(\Rightarrow\) \(\Delta BHA=\Delta CKA\) (g.c.g)
\(\Rightarrow\) BH = CK ( 2 cạnh tương ứng )
\(\Rightarrow\) đpcm
Cho ∆ ABC, biết trung tuyến AM và đường cao AH chia ∆ABC thành ba phần bằng nhau. Hãy tính số đo mỗi gói của ∆ ABC.
Đây là cuộc thi nhé. cần sự công bằng. Mong em không tái phạm lần sau. Bạn sẽ bị khóa nick hoặc trừ 5000 điểm nhé!
BQT thân gửi em!
__BQT Lớp 6/7 Hỏi Đáp__
Bài 1: Cho tam giác ABC cân ở A. Các đường thẳng qua đỉnh B,C và trung điểm O của đường cao tương ứng với đỉnhA cắt các cạnh AB, AC tương ứng tại M, N. Biết diện tích tam giác ABC bằng S, tính diện tích tứ giác AMON?
Bài 2: Cho tứ giác ABCD, M và N lần lượt là trung điểm của BC và AD. AM cắt BN ở I, DM cắt CN ở J. Chứng minh rằng: SMINJ=SABI+SCBJ
Bài 3: Cho tam giác ABC có AB=3cm, BC=4cm, CA=5cm. Đường cao, đường phân giác, đường trung tuyến của tam giác ABC kẻ từ đỉnh B chia tam giác thành 4 phần. Tính diện tích mỗi phần?
Bài 4: Cho tam giác ABC có diện tích 30cm2. trên cạnh AB lấy điểm D sao cho AD=2DB, trên cạnh AC lấy điểm E sao cho AE=3EC. Gọi M là giao điểm của BE và CD. Tính diện tích tam giác AMB?
Tam giác ABC có đường cao AH và trung tuyến AM chia góc A thành ba góc bằng nhau. Chứng minh rằng ∆ABC là tam giác vuông và ∆ABM là tam giác đều. Help me
Xét ΔABM có AHvừa là đường cao, vừa là phân giác
nên ΔABM cân tại A
=>H là trung điểm của BM
Xét ΔAHC có AM là phân giác
nên AH/AC=CM/MH=CM/2MB=CM/2MC=1/2
Xet ΔAHC vuông tại H có sin ACH=AH/AC=1/2
nên góc ACH=30 độ
=>góc HAC=60 độ
=>góc BAH=1/2*góc HAC=30 độ
=>góc BAC=90 độ
=>ΔABC vuông tại A
Xét ΔABC vuông tại A có góc B+góc C=90 độ
=>góc B=60 độ
mà ΔAMB cân tại A
nên ΔAMB đều
2 tháng 1 2017 lúc 21:06
Bài tập:
Bài 1: Cho D ABC cân tại A. Vẽ AH vuông góc với BC tại H, có AB = 5cm, BC = 6cm.
1) Chứng minh hai tam giác ABH và ACH bằng nhau
2) Tìm độ dài đoạn AH?
c) Hãy cho biết trong tam giác trên AH là đường nào trong các đường sau: đường trung tuyến, đường cao, đường phân giác, đường trung trực?
Bài 2: Cho tam giác ABC cân tại A, gọi H là trung điểm của cạnh BC. Từ H vẽ HM vuông góc AB tại M, HN vuông AC tại N.
a) Chứng minh hai tam giác ABH và ACH bằng nhau
b) Chứng minh HM = HN
c) Chứng minh AM = AN
d) AH có là đường trung trực của tam giác ABC hay không? Vì sao?
Bài 3: Cho tam giác ABC có ba góc nhọn, vẽ hai đường cao AD và BE cắt nhau tại H. Cho biết góc ACB = 50 độ.
a) Chứng minh CH vuông góc AB
b) Tính góc BHD và góc DHE?
Bài 4: Cho tam giác ABC vuông tại A, BD là tia phân giác của góc B, trên tia BC lấy điểm E sao cho BA = BE, gọi H là giao điểm của AB với DE.
a) Chứng minh DE vuông góc BE
b) Chứng minh BD là đường trung trực của AE
c) Chứng minh AE song song với HC.