Cho tam giác ABC có AB + AC = 2BC. Gọi G, O lần lượt là trọng tâm, điểm cách đều của tam giác ABC. CMR: GO // BC.
HD: Gọi giao điểm của AO và BC là D, giao điểm của AG và BC là N.
Cho tam giác ABC có AB + AC = 2BC. Gọi G, O lần lượt là trọng tâm, điểm cách đều của tam giác ABC. CMR: GO // BC.
HD: Gọi giao điểm của AO và BC là D, giao điểm của AG và BC là N.
Bài hay quá!
Điểm cách đều tam giác ở đây chắc là tâm đường tròn nội tiếp?
Gọi điểm tiếp xúc của đường tròn nội tiếp (O) với hai cạnh BC,AB là D,F. Gọi M là trung điểm của BC và phân giác AO cắt đường tròn ngoại tiếp tam giác ABC ở K.
Ta kí hiệu \(a,b,c\) là độ dài ba cạnh BC,CA,AB như thông thường. Ta có ngay \(b+c=2a,\)(do giả thiết). Mặt khác \(AF=\frac{b+c-a}{2}=\frac{a}{2}=BM\). Mặt khác \(\angle MBK=\frac{\angle A}{2}=\angle FAO\). Suy ra \(\Delta FAO=\Delta MBK\) (cạnh huyền, cạnh góc vuông). Do vậy \(\text{AO=BK, FO=KM}\), suy ra \(OD=KM\). . Gọi \(T=AK\cap BC\) suy ra \(T\) là trung điểm \(KO\).
Cuối cùng để ý rằng \(\angle OBK=\frac{B}{2}+\frac{A}{2}=\angle BOK\to\Delta OBK\) cân ở \(K\), do đó \(KB=KO=KA\to AO=2OT.\) Vậy ta có \(\frac{AO}{OT}=2=\frac{AG}{GN}\to\) theo định lý Ta-let đảo thì OG song song BC.
Bài này hay đến nỗi nên thơ, hay đến nỗi nỗi làm rung động các nhà bác học toán lừng danh trên thế giới
Em ngồi bật olm
Lúc vào giải toán thấy câu hỏi này
Em ngồi suy nghĩ chần chừ
Tìm ra đáp số thế mà lại sai
Bài này công nhận là hay
Vừa hay vừa khó quả là đỉnh cao
Bạn nào thấy bài thơ đây
Vui lòng các bạn cho mình ****
Cho tam giác ABC có AB + AC = 2BC. Gọi G, O lần lượt là trọng tâm, điểm cách đều của tam giác ABC. CMR: GO // BC.
HD: Gọi giao điểm của AO và BC là D, giao điểm của AG và BC là N.
Cho tam giác ABC có AB + AC = 2BC. Gọi G, O lần lượt là trọng tâm, điểm cách đều của tam giác ABC. CMR: GO // BC.
HD: Gọi giao điểm của AO và BC là D, giao điểm của AG và BC là N.
Áp dụng định lý toa-lét
Cho tam giác ABC có: AB = 12cm, BC = 15cm, AC = 18cm. Gọi I là giao điểm của các đường phân giác và G là trọng tâm tam giác. Biết D và M lần lượt là giao điểm của AI, AG với BC. Chọn khẳng định sai:
A. IG // BC
B. A I I D = A G G M
C. A B G ^ = C B G ^
D. I D A D = M G M A
Gọi D, M là giao điểm của AI, AG với BC.
Vì AD là tia phân giác góc B A C ^ nên B D A B = D C A C (t/c)
⇒ B D 12 = D C 18 = B D + D C 12 + 18 = 15 30 = 1 2
=> BD = 12. 1 2 = 6, DC =18. 1 2 = 9
Lại có: BI là tia phân giác A B D ^ nên A I I D = A B B D = 12 6 = 2 (tính chất)
=> I D A D = M G M A = 1 3 hay D đúng
Mà AG = 2GM (vì G là trọng tâm)
Nên A I I D = A G G M = 2 hay B đúng
Theo định lí đảo của định lí Talet ta có:
IG // DM => IG // BC hay A đúng
Chỉ có C sai
Đáp án: C
cho tam giác ABC có AB+AC=2BC. Gọi I, G lần lượt là giao điểm của các đường phân giác và trọng tâm tam giác ABC. Chứng minh IG song song với BC
Cho tam giác ABC đều, có AH là đường cao và M là điểm bất kì thuộc đoạn BC. Kẻ MP và MQ lần lượt vuông góc với AB và AC. Gọi O là trung điểm của AM. Gọi G là trọng tâm tam giác ABC, I là giao điểm của PQ và OH. Chứng minh rằng: 3 điểm M, I, G thẳng hàng
Cho tam giác ABC nhọn có trực tâm H. Gọi M, N theo thứ tự là trung điểm của BC, AC. Gọi O là giao điểm của các đường trung trực của BC, AC.
a) CMR: tam giác OMN đồng dạng với tam giác HAB. Tính tỉ số đồng dạng
b) Gọi G là trọng tâm của tam giác ABC
CMR: tam giác HAG đồng dạng với tam giác OMG
c)CMR: 3 điểm H, G, O thẳng hàng và GH = 2.GO
Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,
ghghhggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
a: OM//AH
ON//BH
MN//AB
=>góc BAH=góc OMN và góc ABH=góc ONM
=>ΔABH đồng dạng vơi ΔMNO
b: G là trọng tâm của ΔABC
=>GM/GA=1/2
ΔABH đồng dạng với ΔMNO nên OM/AH=MN/AB=1/2
=>OM/AH=MG/AG
=>ΔHAG đồng dạng với ΔOMG
c: ΔHAG đồng dạng với ΔOMG
=>góc AGH=góc OGM và GH/GO=GA/GM=2
=>H,G,O thẳng hàng và GH=2GO
cho tam giác ABc có trực tâm AH. Gọi M và N lần lượt là trung điểm của BC và AC. Gọi O là giao điểm của các đường trung trực của tam giác và G là trọng tâm của tam giác. Chứng minh:
a) ΔOMN∼ΔHAB⇒AH=2OMΔOMN∼ΔHAB⇒AH=2OM
b) ΔHAG∼ΔOMGΔHAG∼ΔOMG
c) H, G, O thẳng hàng, GH = 2.GO
cho tam giác abc có M trung điểm của BC ,N là trung điểm của AC ,đường trung trực BC cắt dường trung trực của AC tại O,gọi H là trực tâm tam giác ABC
a cm tam giác AHB đồng dạng tam giác MNO
b gọi G là giao điểm của OH với AM cmr G là trọng tâm của tam giác ABC
a: OM//AH
ON//BH
MN//AB
=>góc BAH=góc OMN và góc ABH=góc ONM
=>ΔABH đồng dạng với ΔMNO
b: A,G,M thẳng hàng và H,G,O thẳng hàng
=>góc AGH=góc MGO
=>ΔAHG đồng dạng với ΔMOG
=>OM/AH=MG/AG
=>OM/AH=MN/AB=1/2
=>GM/GA=1/2
=>G là trọng tâm của ΔACB