Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quỳnh Như Trần Thị
Xem chi tiết
AllesKlar
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 5 2018 lúc 2:20

Đáp án D.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 1 2019 lúc 2:00

Chọn C

Phan Trần Quốc Bảo
Xem chi tiết
Phương Thảo
8 tháng 4 2016 lúc 13:40

Giả sử: \(z=x+yi\) \((x;y\in|R)\)

Ta có: \((1+i)z+2\overline{z}=2\)

  <=> \((1+i)(x+yi)+2(x-yi)=2\)

  <=> \(x+yi+xi-y+2x-2yi-2=0\)

  <=> \((3x-y-2)+(x-y)i=0\)

  <=> \(\begin{align} \begin{cases} 3x-y&=2\\ x-y&=0 \end{cases} \end{align}\)

  <=> \(\begin{align} \begin{cases} x&=1\\ y&=1 \end{cases} \end{align}\)

=> \(z=1+i\)

Ta có: \(\omega=z+2+3i \)

               \(=1+i+2+3i\)

               \(=3+4i\)

=> \(|\omega|=\sqrt{3^2+4^2}=5\)

Phạm Minh Khánh
8 tháng 4 2016 lúc 16:44

Đặt \(z=a+bi\left(a,b\in R\right)\)

Theo bài ta có : \(\begin{cases}3a-b=2\\a-b=0\end{cases}\) \(\Leftrightarrow\begin{cases}a=1\\b=1\end{cases}\) nên \(z=1+i\)

Khi đó \(\omega=z+2+3i=1+i+2+3i=3+4i\)

Vậy \(\left|\omega\right|=\sqrt{3^2+4^2}=5\)

Nam Tước Bóng Đêm
8 tháng 4 2016 lúc 20:38

=5 bn nha

Nguyễn Tùng Anh
Xem chi tiết
Lê Thị Kim Chi
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 4 2019 lúc 19:59

Câu 1:

Gọi \(A\left(1;-1\right)\)\(B\left(2;3\right)\Rightarrow\) tập hợp \(z\) thoả mãn điều kiện đề bài là đường trung trực d của đoạn AB, ta dễ dàng viết được phương trình d có dạng \(4x-y-5=0\)

Gọi \(M\left(-2;-1\right)\)\(N\left(3;-2\right)\)\(I\left(a;b\right)\) là điểm bất kì biểu diễn \(z\Rightarrow I\in d\) \(\Rightarrow P=IM+IN\). Bài toán trở thành dạng cực trị hình học phẳng quen thuộc: cho đường thẳng d và 2 điểm M, N cố định, tìm I thuộc d để \(P=IM+IN\) đạt GTNN

Thay toạ độ M, N vào pt d ta được 2 giá trị trái dấu \(\Rightarrow M;N\) nằm về 2 phía so với d

Gọi \(C\) là điểm đối xứng M qua d \(\Rightarrow IM+IN=IC+IN\), mà \(IC+IN\ge CN\Rightarrow P_{min}=CN\) khi I, C, N thẳng hàng

Phương trình đường thẳng d' qua M và vuông góc d có dạng:

\(1\left(x+2\right)+4\left(y+1\right)=0\Leftrightarrow x+4y+6=0\)

Gọi D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+4y+6=0\\4x-y-5=0\end{matrix}\right.\) \(\Rightarrow D\left(\frac{14}{17};-\frac{29}{17}\right)\)

\(\overrightarrow{MD}=\overrightarrow{DC}\Rightarrow C\left(-2;-1\right)\Rightarrow P_{min}=CN=\sqrt{\left(3+2\right)^2+\left(-2+1\right)^2}=\sqrt{26}\)

Bài 2:

Tập hợp \(z\) là các điểm M thuộc đường tròn (C) tâm \(I\left(0;1\right)\) bán kính \(R=\sqrt{2}\) có phương trình \(x^2+\left(y-1\right)^2=2\)

\(\Rightarrow\left|z\right|=OM\Rightarrow\left|z\right|_{max}\) khi và chỉ khi \(M;I;O\) thẳng hàng và M, O nằm về hai phía so với I

\(\Rightarrow M\) là giao điểm của (C) với Oy \(\Rightarrow M\left(0;1+\sqrt{2}\right)\Rightarrow\) phần ảo của z là \(b=1+\sqrt{2}\)

Câu 3:

\(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)=5+\sqrt{2}i\)

\(\Rightarrow z=5-\sqrt{2}i\Rightarrow b=-\sqrt{2}\)

Nguyễn Việt Lâm
26 tháng 4 2019 lúc 20:45

Câu 4

\(z.z'=\left(m+3i\right)\left(2-\left(m+1\right)i\right)=2m-\left(m^2+m\right)i+6i+3m+3\)

\(=5m+3-\left(m^2+m-6\right)i\)

Để \(z.z'\) là số thực \(\Leftrightarrow m^2+m-6=0\Rightarrow\left[{}\begin{matrix}m=2\\m=-3\end{matrix}\right.\)

Câu 5:

\(A\left(-4;0\right);B\left(0;4\right);M\left(x;3\right)\)

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;4\right)\\\overrightarrow{AM}=\left(x+4;3\right)\end{matrix}\right.\) \(\Rightarrow A,B,M\) khi và chỉ khi \(\frac{x+4}{4}=\frac{3}{4}\Rightarrow x=-1\)

Câu 6:

\(z=3z_1-2z_2=3\left(1+2i\right)-2\left(2-3i\right)=-1+12i\)

\(\Rightarrow b=12\)

Câu 7:

\(w=\left(1-i\right)^2z\)

Lấy môđun 2 vế:

\(\left|w\right|=\left|\left(1-i\right)^2\right|.\left|z\right|=2m\)

Câu 8:

\(3=\left|z-1+3i\right|=\left|z-1-i+4i\right|\ge\left|\left|z-1-i\right|-\left|4i\right|\right|=\left|\left|z-1-i\right|-4\right|\)

\(\Rightarrow\left|z-1-i\right|\ge-3+4=1\)

Nguyễn Việt Lâm
26 tháng 4 2019 lúc 21:12

Câu 9:

\(z=\frac{i^{2017}}{3+4i}=\frac{\left(i^2\right)^{1008}.i}{3+4i}=\frac{i}{3+4i}=\frac{i\left(3-4i\right)}{\left(3-4i\right)\left(3+4i\right)}=\frac{4}{25}+\frac{3}{25}i\)

Điểm biểu diễn z là \(A\left(\frac{4}{25};\frac{3}{25}\right)\)

Câu 10:

\(a=3\Rightarrow z\) nằm trên đường thẳng \(x=3\)

Câu 11:

\(z_1+z_2=1+2i+2-3i=3-i\)

Câu 12:

\(z=2+5i\Rightarrow\overline{z}=2-5i\)

\(\Rightarrow w=i\left(2+5i\right)+2-5i=-3-3i\)

Câu 13:

\(z^2+z+1=0\Rightarrow\left\{{}\begin{matrix}z_1=-\frac{1}{2}+\frac{\sqrt{3}}{2}i\\z_2=-\frac{1}{2}-\frac{\sqrt{3}}{2}i\end{matrix}\right.\) (ném vô casio cho giải pt)

\(\Rightarrow z_0=-\frac{1}{2}-\frac{\sqrt{3}}{2}i\Rightarrow w=\frac{i}{z_0}=-\frac{\sqrt{3}}{2}-\frac{1}{2}i\) (ném vô mode 2 bấm cho lẹ) \(\Rightarrow M\left(-\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\)

Câu 14:

Đặt \(z=x+yi\) \(\Rightarrow\left|x+7+\left(y-5\right)i\right|=\left|x-1+\left(y-11\right)i\right|\)

\(\Rightarrow\left(x+7\right)^2+\left(y-5\right)^2=\left(x-1\right)^2+\left(y-11\right)^2\)

\(\Rightarrow4x+3y-12=0\) quỹ đạo là đường thẳng d

Gọi \(A\left(2;8\right);B\left(6;6\right)\) và I là trung điểm AB \(\Rightarrow I\left(4;7\right)\)

\(M\left(x;y\right)\) là điểm biểu diễn \(z\Rightarrow P=MA^2+MB^2\)

Tam giác AMB có MI là trung tuyến ứng với cạnh AB

Theo công thức trung tuyến: \(MA^2+MB^2=2MI^2+\frac{AB^2}{2}\)

\(\Rightarrow P_{min}\) khi và chỉ khi \(MI_{min}\)

Gọi \(C\) là hình chiếu của I lên d \(\Rightarrow\Delta ICM\) vuông tại C, do IM là cạnh huyền và IC là cạnh góc vuông nên \(IM\ge IC\Rightarrow IM_{min}=IC\)

Vậy ta quy về bài toán tìm hình chiếu của I lên d

Đường thẳng qua I vuông góc với d có pt:

\(3\left(x-4\right)-4\left(y-7\right)=0\Leftrightarrow3x-4y+16=0\)

Tọa độ C là nghiệm: \(\left\{{}\begin{matrix}4x+3y-12=0\\3x-4y+16=0\end{matrix}\right.\) \(\Rightarrow C\left(0;4\right)\)

\(\Rightarrow p=x^2-y^2=0^2-4^2=-16\) (p này khác P kia nha :D)

Minh Đức
Xem chi tiết
Tran Dang Ninh
8 tháng 6 2016 lúc 21:46

Z= a+bi và \(\overline{Z}\) =a-bi → (1+2i).(a+bi) +(1+2a-2bi)i =1+3i

                              →a+bi +2ai -2b +i +2ai +2b=1+3i      (i2= -1)

                             → a+ (4a+b+1)i  = 1+3i

                           →\(\begin{cases}a=1\\4a+b+1=3\end{cases}\)  → a=1 , b=-2  → modum : \(\left|Z\right|\)=\(\sqrt{5}\)

Đỗ Thùy Dương
Xem chi tiết
Phạm Thái Dương
7 tháng 4 2016 lúc 16:05

 

Điều kiện \(z\ne0;\left|z\right|\ne1\)

\(\Leftrightarrow\frac{\overline{z}\left(\left|z\right|-1\right)\left(1+iz\right)}{\left|z\right|^2-1}=i\Leftrightarrow\frac{\overline{z}\left(\left|z\right|-1\right)\left(1+iz\right)}{\left(\left|z\right|-1\right)\left(\left|z\right|+1\right)}\)

                               \(\Leftrightarrow\overline{z}\left(1+iz\right)=\left(\left|z\right|+1\right)i\)

                               \(\Leftrightarrow\overline{z}+i\left|z\right|^2=\left(\left|z\right|+1\right)i\) (*)

Giả sử \(z=x+yi,x,y\in R\), khi đó (*) trở thành :

\(x-yi+\left(x^2+y^2\right)i=\left(\sqrt{x^2+y^2}+1\right)i\)

\(\Leftrightarrow x+\left(x^2+y^2-\sqrt{x^2+y^2}-y-1\right)i=0\)

\(\Leftrightarrow\begin{cases}x=0\\x^2+y^2-\sqrt{x^2+y^2}-y-1=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=0\\y^2-\left|y\right|-y-1=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=0\\\begin{cases}y=-1\\y=1+\sqrt{2}\end{cases}\end{cases}\)

Nếu \(x=0,y=1+\sqrt{2}\) thì \(z=\left(1+\sqrt{2}\right)i\) thỏa mãn điều kiện

Nếu \(x=0,y=-1\) thì \(z=-i\) , khi đó \(\left|z\right|=1\) không thỏa mãn điều kiện

Vậy số phức cần tìm là \(z=\left(1+\sqrt{2}\right)i\)