Cho :
A = \(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{16}+\dfrac{1}{17}\)
Chứng minh A \(\notin\) N
Cho : A = \(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2012}\). Chứng minh : A \(\notin\) N
Bài1Chứng minh a )A=\(\dfrac{m}{n}=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{10}\notin N\)
B=\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{81}\notin N\)
b) Cho \(\dfrac{m}{n}=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{10}\)
Chứng minh m \(⋮\) 11
Bài này giải ra dài lắm;
Gợi ý : với câu a) cm 1<A<2
với câ u b) 0<B<1
với câu c) áp dụng bài toán của ông gao í; cách tỉnh tổng từ 1->100 trong sách GK 6 có nhé
Mong bạn giải ra
Cho A= \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+\dfrac{1}{10^2}+...+\dfrac{1}{160^2}\)
Chứng minh: \(\dfrac{1}{8}< A< \dfrac{3}{16}\)
1/ Cho A= \(\dfrac{1}{3}\)-\(\dfrac{2}{3^2}\)+\(\dfrac{3}{3^3}\)-\(\dfrac{4}{3^4}\)+.....+\(\dfrac{99}{3^{99}}\)-\(\dfrac{100}{3^{100}}\) Chứng minh A < \(\dfrac{3}{16}\)
2/ Cho B=(\(\dfrac{1}{2^2}\)-1)(\(\dfrac{1}{3^2}\)-1)....(\(\dfrac{1}{100^2}\)-1) So sánh B và \(\dfrac{-1}{2}\)
2:
\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)
\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)
a) Chứng minh rằng: \(\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)
b) Tìm số nguyên a để: \(\dfrac{2a+9}{a+3}+\dfrac{5a+17}{a+3}-\dfrac{3a}{a+3}\) là số nguyên.
Cho A =\(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{16}\) . chứng minh rằng: A không là số tự nhiên
Bài 1. Thực hiện phép tính:
a) |5.0,6+\(\dfrac{2}{3}\)|- \(\dfrac{1}{3}\)
b)(0,25 - 1\(\dfrac{1}{4}\)) : 5 - \(\dfrac{1}{5}\).(-3)\(^2\)
c)\(\dfrac{14}{17}.\dfrac{7}{5}-\dfrac{-3}{17}:\dfrac{5}{7}\)
d)\(\dfrac{7}{16}+\dfrac{-9}{25}+\dfrac{9}{16}+\dfrac{-16}{25}\)
e)\(\dfrac{5}{6}+2\sqrt{\dfrac{4}{9}}\)
a) Ta có: \(\left|5\cdot0.6+\dfrac{2}{3}\right|-\dfrac{1}{3}\)
\(=\left|3+\dfrac{2}{3}\right|-\dfrac{1}{3}\)
\(=3+\dfrac{2}{3}-\dfrac{1}{3}\)
\(=3+\dfrac{1}{3}=\dfrac{10}{3}\)
b) Ta có: \(\left(0.25-1\dfrac{1}{4}\right):5-\dfrac{1}{5}\cdot\left(-3\right)^2\)
\(=\left(\dfrac{1}{4}-\dfrac{5}{4}\right)\cdot\dfrac{1}{5}-\dfrac{1}{5}\cdot9\)
\(=\dfrac{-4}{4}\cdot\dfrac{1}{5}-\dfrac{1}{5}\cdot9\)
\(=\dfrac{1}{5}\cdot\left(-1-9\right)\)
\(=-10\cdot\dfrac{1}{5}=-2\)
c) Ta có: \(\dfrac{14}{17}\cdot\dfrac{7}{5}-\dfrac{-3}{17}:\dfrac{5}{7}\)
\(=\dfrac{14}{17}\cdot\dfrac{7}{5}-\dfrac{-3}{17}\cdot\dfrac{7}{5}\)
\(=\dfrac{7}{5}\cdot\left(\dfrac{14}{17}+\dfrac{3}{17}\right)\)
\(=\dfrac{7}{5}\cdot1=\dfrac{7}{5}\)
d) Ta có: \(\dfrac{7}{16}+\dfrac{-9}{25}+\dfrac{9}{16}+\dfrac{-16}{25}\)
\(=\left(\dfrac{7}{16}+\dfrac{9}{16}\right)-\left(\dfrac{9}{25}+\dfrac{16}{25}\right)\)
\(=\dfrac{16}{16}-\dfrac{25}{25}\)
\(=1-1=0\)
e) Ta có: \(\dfrac{5}{6}+2\sqrt{\dfrac{4}{9}}\)
\(=\dfrac{5}{6}+2\cdot\dfrac{2}{3}\)
\(=\dfrac{5}{6}+\dfrac{4}{3}\)
\(=\dfrac{5}{6}+\dfrac{8}{6}=\dfrac{13}{6}\)
chứng minh rằng
a , \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+...+\dfrac{1}{512}-\dfrac{1}{1024}\) < \(\dfrac{1}{3}\)
b , \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\) < \(\dfrac{3}{16}\)
Cho A= \(\dfrac{1}{5^2}+\dfrac{2}{5^3}+\dfrac{3}{5^4}+...+\dfrac{11}{5^{12}}\) với n\(\in N\)
Chứng minh rằng a < \(\dfrac{1}{16}\)
Ta có: \(A=\dfrac{1}{5^2}+\dfrac{2}{5^3}+...+\dfrac{11}{5^{12}}\)
\(\Rightarrow5A=\dfrac{1}{5}+\dfrac{2}{5^2}+...+\dfrac{11}{5^{11}}\)
\(\Rightarrow5A-A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\)
\(\Rightarrow4A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\)
\(\Rightarrow20A=1+\dfrac{1}{5}+...+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\)
\(\Rightarrow20A-4A=\left(1+\dfrac{1}{5}+...+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\right)\)
\(\Rightarrow16A=1-\dfrac{12}{5^{11}}+\dfrac{11}{5^{12}}< 1\)
\(\Rightarrow A< \dfrac{1}{16}\)
⇒5A=15+252+...+11511⇒5A=15+252+...+11511
⇒5A−A=15+152+...+1511−11512⇒5A−A=15+152+...+1511−11512
⇒4A=15+152+...+1511−11512⇒4A=15+152+...+1511−11512
⇒20A=1+15+...+1510−11511⇒20A=1+15+...+1510−11511
⇒20A−4A=(1+15+...+1510−11511)−(15+152+...+1511−11512)⇒20A−4A=(1+15+...+1510−11511)−(15+152+...+1511−11512)
⇒16A=1−12511+11512<1⇒16A=1−12511+11512<1
⇒A<116⇒A<116