cmr:ab+cd chia hết cho 11thì abcd chia hết cho 11
cmr:ab+cd+eg chia hết cho 11 thì abcdeg chia hết cho 11 biết a,b,c,d,e,g là chữ số
cho ab+cd chia hết cho 11. Chứng tỏ abcd chia hết cho 11
Một số chia hết cho 11 khi hiệu giữa tổng các chữ số ở vị trí chẵn (hoặc lẻ) với tổng các chữ số ở vị trí lẻ (hoặc chẵn) chia hết cho 11
\(\overline{abcd}⋮11\) khi \(\left(a+c\right)-\left(b+d\right)⋮11\) hoặc \(\left(b+d\right)-\left(a+c\right)⋮11\)
Ta có
\(\overline{ab}+\overline{cd}=10.a+b+10.c+d=\)
\(=11.a+11.c+\left(b+d\right)-\left(a+c\right)=\)
\(=11.\left(a+c\right)+\left(b+d\right)-\left(a+c\right)⋮11\)
Ta có \(11.\left(a+c\right)⋮11\Rightarrow\left(b+d\right)-\left(a+c\right)⋮11\)
\(\Rightarrow\overline{abcd}⋮11\)
cmr:ab+cd chia hết cho 11thì abcd chia hết cho 11
(Cd+3.2²×ab) chia hết cho 11
Chúng minh abcd chia hết cho 11
CMR: ab+cd chia hết cho 11 thì abcd chia hết cho 11
Ta có:
abcd = ab.100 +cd = ab.99 +ab +cd = ab.9.11 + ab +cd
Vì ab.9.11 chia hết cho 11 nên để abcd chia hết cho 11 thì ab + cd phải chia hết cho 11
Vậy nếu ab+ cd chia hết cho 11 thì abcd chia hết cho 11
chứng minh ab+cd chia hết cho 11 thì abcd chia hết cho 11
Ta có:abcd-(ab+cd)=1000a+100b+10c+d-10a-b-10c-d=990a+99b=11(90a+9b)\(⋮11\)
Mà ab+cd\(⋮11\)\(\Rightarrow\)abcd\(⋮11\left(đpcm\right)\)
Ta có:
\(\overline{abcd}-\left(\overline{ab}+\overline{cd}\right)=100\overline{ab}+\overline{cd}-\overline{ab}-\overline{cd}=11.9\overline{ab}\)
Mà \(\overline{ab}+\overline{cd}\) và \(11.9\overline{ab}\) \(⋮\) 11 nên \(\overline{abcd}⋮11\)(đpcm)
Chứng minh rằng ab+cd chia hết cho 11 thì abcd chia hết cho 11
ta có: abcd=100.ab+cd=99.ab+(ab+cd)=11.9.ab+(ab+cd)
vì ab+cd chia hết cho 11;11.9.ab chia hết cho 11
vậy ab+cd chia hết cho 11 thì abcd chia hết cho 11
. là dấu nhân nhé
CHÚC BẠN HỌC TỐT
ta có
abcd= ab.100 + cd
= ab.99 + ab + cd
= ab.99 +( ab + cd)
do ab.99= ab.9.11 chia hết cho 11
và theo bài ra ta có ab + cd chia hết cho 11
vậy suy ra :
ab.99 +( ab + cd) chia hết cho 11
suy ra abcd chia hết cho 11
Ta có:abcd=ab.100+cd
=ab.99+ab+cd
=ab.11.99+(ab+cd)
Vì 11\(⋮\)11=>ab.11.9 chia hết cho 11
=>(ab+cd)chia hết cho 11
Vậy abcd chia hết cho 11
k mik nha
Chứng minh rằng ab+cd chia hết cho 11 thì abcd chia hết cho 11
abcd-(ab+cd)=99.ab chia hết cho 11
=> abcd chia hết cho 11
Ta có:abcd=ab.100+cd
=ab.99+ab+cd
=ab.11.99+(ab+cd)
Vì 11\(⋮\)11=>ab.11.9 chia hết cho 11
=>(ab+cd)chia hết cho 11
Vậy abcd chia hết cho 11
k mik nha
Chứng minh nếu ab+ cd chia hết cho 11 thì abcd chia hết cho 11
ta co
abcd=100ab+cd=99ab+(ab+cd)
vì 99ab chia het cho11 nen neu ab+cd chia het cho 11 thi abcd chia het cho11
tu day ne
tra loi cho cau roi do nh
hinh như co thuong cung len online math do
co dang bai kho lam
bai do noi ve cong viec lam dong thoi
giải gì ngắn thế ? siêu nhân hay siêu nhanh đây hả trời (Thành đây nè)
ta có b = abcd = 100ab + cd
= (ab + cd ) + 99.ab
ab +cd + 11.9.ab
vi 11 . 9 . ab chia hết cho 11 => (ab + cd ) chia hết cho 11
=> abcd chia het cho 11