Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}vàa+b+c\ne0\) Tính M=\(\frac{a^2b^2c^{1930}}{b^{1935}}\)
1. Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a};a+b+c\ne0;a=2003\) . Tính b,c
2. CHo \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a};a+b+c\ne0\). Tính \(M=\frac{a^3b^2c^{1930}}{b^{1935}}\)
Easy mà sao còn phải hỏi? Kiến thức cơ bản của sgk đủ giải rồi! =))
1)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=\frac{2003+b+c}{b+c+2003}=1\Rightarrow a=b=c=2003\)
2) Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)
Từ đó suy ra: \(\frac{a^3b^2c^{1930}}{b^{1935}}=\frac{b^3b^2b^{1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\) (do a = b =c nên ta thế a, c = b)
Đó đó: \(M=\frac{a^3b^2c^{1930}}{b^{1935}}=\frac{b^3b^2b^{1930}}{b^{1935}}=1\)
cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\left(a+b+c\ne0\right)\)
tính M = \(\frac{a^3.b^2.c^{1930}}{b^{1935}}\)
áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
ta có : \(\frac{a}{b}=1\Rightarrow a=b\) 1
\(\frac{b}{c}=1\Rightarrow b=c\) 2
\(\frac{c}{a}=1\Rightarrow c=a\) 3
từ 1 2 3 \(\Rightarrow\) a=b=c
\(\Rightarrow\)M=\(\frac{a^3.b^2.c^{1930}}{b^{1935}}=\frac{b^3.b^2.b^{1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\)
cho \(\frac{a}{b}=\frac{b}{c}=\frac{a}{a}\)và a + b + c \(\ne0\). Tính giá trị của \(M=\frac{a^3.b^2.c^{1930}}{b^{1935}}\)
Vì \(a+b+c\ne0\)\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b=c\)\(\Rightarrow M=\frac{a^3.b^2.c^{1930}}{b^{1935}}=\frac{b^3.b^2.b^{1930}}{b^{1935}}=\frac{b^{3+2+1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\)
Vậy \(M=1\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\) \(\left(a,b,c,d\ne0;a+b+c+d\ne0\right)\)
Tính: \(M=\frac{3a-2b}{c+d}+\frac{3b-2c}{d+a}+\frac{3c-2d}{a+b}+\frac{3d-2a}{b+c}\)
Áp dụng TCDTSBN ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a+b+c+d khác 0)
=>a=b=c=d
=>M=\(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{1}{2}\cdot4=2\)
Ta có:a/b=b/c=c/d=d/a
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:a/b=b/c=c/d=(a+b+c+d)/(b+c+d+a)=1
=>a=b=c=d(vì a/b=b/c=c/d=d/a=1)
Thay vào M sau đó tìm được M=2
cho dãy tỉ số bằng nhau
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}\)
\(=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
tính giá trị biểu thức \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(\left(a,b,c,d\ne0;a+b+c+d\ne0;a+b\ne0;b+c\ne0;c+d\ne0;d+a\ne0\right)\)
\(Cho:\frac{2y+2z-x}{a}=\frac{2z+2x-y}{b}=\frac{2x+2y-z}{c};trongđó:a,b,c,2b+2c-a,2c+2a-b,2a+2b-c\ne0.cmr:\frac{x}{2b+2c-a}=\frac{y}{2c+2a-b}=\frac{z}{2a+2b-c}\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)\(\left(a+b+c+d\ne0\right)\)Tìm M = \(\frac{2a-b}{c+d}=\frac{2b-c}{d+a}=\frac{2c-d}{a+b}=\frac{2d-a}{b+c}\)
Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\) (đề bài)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{d}=1\\\frac{d}{a}=1\end{cases}\Rightarrow\begin{cases}a=b\\b=c\\c=d\\d=a\end{cases}\)
\(\Rightarrow a=b=c=d\)
Thay \(b=a\) ; \(c=a\) ; \(d=a\) vào biểu thức \(M=\frac{2a-b}{c+d}=\frac{2b-c}{d+a}=\frac{2c-d}{a+b}=\frac{2d-a}{b+c}\) ta có :
\(M=\frac{2a-a}{a+a}=\frac{2a-a}{a+a}=\frac{2a-a}{a+a}=\frac{2a-a}{a+a}\)
\(M=\frac{1a}{2a}=\frac{1a}{2a}=\frac{1a}{2a}=\frac{1a}{2a}=\frac{1}{2}\)
Vậy \(M=\frac{1}{2}\)
cho \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\left(a,b,c,d\ne0\right)\)
Tính \(A=\frac{2011a-2010b}{c+d}+\frac{2011b+2010c}{a+d}+\frac{2011c-2010d}{a+b}+\frac{2011d-2010a}{b+c}\)
Áp dụng TC DTSBN ta có :
\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2b+2c+2d+2a}=\frac{a+b+c+d}{2\left(a+b+c+d\right)}=\frac{1}{2}\)
\(\Rightarrow\frac{a}{2b}=\frac{1}{2}\Rightarrow a=\frac{1}{2}.2b\Rightarrow a=b\) (1)
\(\Rightarrow\frac{b}{2c}=\frac{1}{2}\Rightarrow b=\frac{1}{2}.2c\Rightarrow b=c\) (2)
\(\Rightarrow\frac{c}{2a}=\frac{1}{2}\Rightarrow c=\frac{1}{2}.2a\Rightarrow c=a\) (3)
\(\Rightarrow\frac{d}{2a}=\frac{1}{2}\Rightarrow d=\frac{1}{2}.2a\Rightarrow d=a\) (4)
Từ (1);(2);(3):(4) \(\Rightarrow a=b=c=d\) .Thay vào A ta được :
\(A=\frac{2011a-2010a}{a+a}+\frac{2011a+2010a}{a+a}+\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}\)
\(=\frac{a}{2a}+\frac{4021a}{2a}+\frac{a}{2a}+\frac{a}{2a}=\frac{a+4021a+a+a}{2a}=\frac{4024a}{2a}=\frac{4024}{2}=2012\)
Vậy \(A=2012\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)trong đó \(a+b+c+d\ne0\)
Tính giá trị của biểu thức \(\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a + b + c + d khác 0) nên a = b = c = d
\(\Rightarrow\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)
\(=\frac{1}{2}.4=2\)