Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
卡拉多克
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Trần Minh Hoàng
23 tháng 1 2021 lúc 23:22

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

Nguyễn Việt Lâm
23 tháng 1 2021 lúc 23:54

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Levi Ackerman
Xem chi tiết
Akai Haruma
21 tháng 5 2021 lúc 22:59

Lời giải:

Hiển nhiên $a-b>0$.

Ta có:

\(P=\sqrt{ab}.\sqrt{ab}+\frac{a-b}{\sqrt{ab}}=\sqrt{ab}.\frac{a+b}{a-b}+\frac{a-b}{\sqrt{ab}}\geq 2\sqrt{a+b}\) theo BĐT AM-GM.

Mặt khác:

Từ ĐKĐB suy ra \(ab(a-b)^2=(a+b)^2\)

\(\Leftrightarrow ab[(a+b)^2-4ab]=(a+b)^2\)

Đặt $a+b=x; ab=y$ với $x,y>0; x^2\geq 4y$ thì:

\(y(x^2-4y)=x^2\Leftrightarrow x^2(y-1)=4y^2\)

Hiển nhiên $y>1$

$\Rightarrow x^2=\frac{4y^2}{y-1}=\frac{4(y^2-1)}{y-1}+\frac{4}{y-1}$

$=4(y+1)+\frac{4}{y-1}=4(y-1)+\frac{4}{y-1}+8$

$\geq 2\sqrt{4(y-1).\frac{4}{y-1}}+8=16$ (AM-GM)

$\Rightarrow x\geq 4$ hay $a+b\geq 4$

Do đó: $P\geq 2\sqrt{a+b}\geq 2\sqrt{4}=4$

Vậy $P_{\min}=4$
Giá trị này đạt tại $(a,b)=(2+\sqrt{2}, 2-\sqrt{2})$

missing you =
22 tháng 5 2021 lúc 6:02

ta có \(\sqrt{ab}=\dfrac{a+b}{a-b}=>ab=\dfrac{\left(a+b\right)^2}{\left(a-b\right)^2}\)

=>P=\(ab+\dfrac{a-b}{\sqrt{ab}}=\dfrac{\left(a+b\right)^2}{\left(a-b\right)^2}+\dfrac{a-b}{\dfrac{a+b}{a-b}}=\dfrac{\left(a+b\right)^2}{\left(a-b\right)^2}+\dfrac{\left(a-b\right)^2}{a+b}\)

áp dụng BDT AM-GM ta có \(\dfrac{\left(a+b\right)^2}{\left(a-b\right)^2}+\dfrac{\left(a-b\right)^2}{a+b}\ge\sqrt{\dfrac{\left(a+b\right)^2}{\left(a-b\right)^2}.\dfrac{\left(a-b\right)^2}{a+b}}=2\sqrt{a+b}\left(1\right)\)

lại có \(\sqrt{ab}=\dfrac{a+b}{a-b}=>a+b=\sqrt{ab}.\left(a-b\right)=>2.\left(a+b\right)=2.\sqrt{ab}.\left(a-b\right)\)

áp dụng BDT AM-GM ta được \(2\left(a+b\right)=2.\sqrt{ab}.\left(a-b\right)\le\dfrac{\left(2\sqrt{ab}\right)^2+\left(a-b\right)^2}{2}=\dfrac{4ab+a^2-2ab+b^2}{2}\)

=\(\dfrac{\left(a+b\right)^2}{2}\)

=>\(2\left(a+b\right)\le\dfrac{\left(a+b\right)^2}{2}=>a+b\ge4\left(2\right)\)

từ (1)(2)=>\(\dfrac{\left(a+b\right)^2}{\left(a-b\right)^2}+\dfrac{\left(a-b\right)^2}{a+b}\ge2\sqrt{a+b}\ge4\)

dấu '=' xảy ra \(\Leftrightarrow\)a=2\(+\sqrt{2}\), b=\(2-\sqrt{2}\)

vậy MIn P=4 khi (a,b)=(2+\(\sqrt{2};2-\sqrt{2}\))

Big City Boy
Xem chi tiết
Akai Haruma
28 tháng 10 2021 lúc 16:38

Lời giải:

Áp dụng BĐT AM-GM:
\(P=\sum \sqrt{\frac{ab}{c+ab}}=\sum \sqrt{\frac{ab}{c(a+b+c)+ab}}=\sum \sqrt{\frac{ab}{(c+a)(c+b)}}\)

\(\leq \sum \frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)=\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)

Vậy $P_{\max}=\frac{3}{2}$ khi $a=b=c=\frac{1}{3}$

Nguyễn Tuấn Anh
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 6 2021 lúc 15:11

\(\sqrt{\dfrac{ab}{c+ab}}=\sqrt{\dfrac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\)

Tương tự: \(\sqrt{\dfrac{bc}{a+bc}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}\right)\) ; \(\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{c}{b+c}\right)\)

Cộng vế với vế:

\(P\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}+\dfrac{b}{b+c}+\dfrac{c}{b+c}+\dfrac{b}{a+b}+\dfrac{a}{a+b}\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

camcon
Xem chi tiết
Nguyễn Hoàng Minh
30 tháng 12 2021 lúc 23:02

\(\dfrac{ab}{\sqrt{ab+2c}}=\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}=ab\cdot\sqrt{\dfrac{1}{a+b}\cdot\dfrac{1}{b+c}}\le ab\cdot\dfrac{1}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)=\dfrac{1}{2}\left(\dfrac{ab}{a+b}+\dfrac{ab}{b+c}\right)\)

CMTT: \(\dfrac{bc}{\sqrt{bc+2a}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right);\dfrac{ac}{\sqrt{ac+2b}}\le\dfrac{1}{2}\left(\dfrac{ac}{b+c}+\dfrac{ac}{b+a}\right)\)

\(\Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{ab}{c+a}+\dfrac{ab}{c+b}+\dfrac{bc}{b+a}+\dfrac{bc}{c+a}+\dfrac{ac}{b+c}+\dfrac{ac}{b+c}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left[\dfrac{b\left(a+c\right)}{a+c}+\dfrac{a\left(b+c\right)}{b+c}+\dfrac{c\left(a+b\right)}{a+b}\right]=\dfrac{1}{2}\left(a+b+c\right)=1\)

Dấu \("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)

Nguyễn Việt Lâm
30 tháng 12 2021 lúc 23:06

\(\dfrac{ab}{\sqrt{ab+2c}}=\dfrac{ab}{\sqrt{ab+c\left(a+b+c\right)}}=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\)

Tương tự:

\(\dfrac{bc}{\sqrt{bc+2a}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right)\) ; \(\dfrac{ca}{\sqrt{ac+2b}}\le\dfrac{1}{2}\left(\dfrac{ca}{a+b}+\dfrac{ca}{b+c}\right)\)

Cộng vế:

\(P\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{ca}{a+b}+\dfrac{ab}{a+c}+\dfrac{bc}{a+c}+\dfrac{ab}{b+c}+\dfrac{ca}{b+c}\right)=\dfrac{1}{2}\left(a+b+c\right)=1\)

\(P_{max}=1\) khi \(a=b=c=\dfrac{2}{3}\)

Vũ Thanh Lương
Xem chi tiết
Vũ Thanh Lương
12 tháng 1 2022 lúc 21:19

cái cuối là \(\dfrac{1}{\sqrt{c^2-ca+a^2}}\)  nha

Nguyễn Việt Lâm
14 tháng 1 2022 lúc 6:05

\(a^2+b^2-ab\ge\dfrac{1}{2}\left(a+b\right)^2-\dfrac{1}{4}\left(a+b\right)^2=\dfrac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow\dfrac{1}{\sqrt{a^2-ab+b^2}}\le\dfrac{1}{\sqrt{\dfrac{1}{4}\left(a+b\right)^2}}=\dfrac{2}{a+b}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

Tương tự:

\(\dfrac{1}{\sqrt{b^2-bc+c^2}}\le\dfrac{1}{2}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\) ; \(\dfrac{1}{\sqrt{c^2-ca+a^2}}\le\dfrac{1}{2}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\)

Cộng vế:

\(P\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

VUX NA
Xem chi tiết
黃旭熙.
4 tháng 9 2021 lúc 19:54

黃旭熙.
4 tháng 9 2021 lúc 19:55

Ủa bị lỗi hả:v? undefined

dilan
Xem chi tiết