Cho phương trình ẩn x với \(x\ne1;x\ne2\)
\(\dfrac{4x-7}{x^2-3x+2}=\dfrac{a}{x-1}+\dfrac{b}{x-2}\)
Tìm a và b để phương trình có nghiệm là bất kì số thực nào khác 1 và 2
Cho phương trình ẩn x (x+a)/(x+2)+(x-2)/(x-a)=2 a/ Giải phương trình với ẩn a=4 b/ Tìm các giá trị của a sao cho phương trình thừa nhận x=-1
Cho phương trình ẩn x: \(\dfrac{x-m}{x+5}+\dfrac{x-5}{x+m}=2\). Giải phương trình với m=-3
Thay `m=-3` ta có:
`(x+3)/(x+5)+(x-5)/(x-3)=2`
`<=>(x^2-9+x^2-25)/((x+5)(x-3))=2`
`<=>(2x^2-34)/(x^2+2x-15)=2`
`<=>2x^2-34=2x^2+4x-30`
`<=>4x=-4`
`<=>x=-1`
Vậy `S={-1}`
Cho phương trình ẩn x: x² - ( m + 1 ) x + 2m - 2 = 0 a) Chứng minh phương trình luôn có nghiệm với mọi m.
\(\Delta=\left(m+1\right)^2-4\left(2m-2\right)=m^2-6m+9=\left(m-3\right)^2\ge0\) ; \(\forall m\)
\(\Rightarrow\) Phương trình luôn có nghiệm với mọi m
Cho phương trình (m-3) x+292=0 (1) với ẩn x (m là tham số)
a. Tìm điều kiện của m để phương trình (1) là phương trình bậc nhất ẩn
b. Tìm m để phương trình (1) có nghiệm x=2
a,để PT trở thành bậc nhất một ản thì m-3\(\ne0\Leftrightarrow m\ne3\)
thay x=2 vào biểu thức ta có m=-143(tm)
Cho phương trình (ẩn x): 4 x 2 - 25 + k 2 + 4 k x = 0 . Giải phương trình với k = 0
Khi k = 0 ta có phương trình: 4 x 2 - 25 = 0
⇔ (2x + 5)(2x – 5) = 0
⇔ 2x + 5 = 0 hoặc 2x – 5 = 0
2x + 5 = 0 ⇔ x = - 5/2
2x – 5 = 0 ⇔ x = 5/2
Vậy phương trình có nghiệm x = - 5/2 hoặc x = 5/2
Cho phương trình (ẩn x): 4 x 2 - 25 + k 2 + 4 k x = 0 . Giải phương trình với k = -3
Khi k = - 3 ta có phương trình: 4 x 2 – 25 + - 3 2 + 4(-3)x = 0
⇔ 4 x 2 – 25 + 9 – 12x = 0
⇔ 4 x 2 – 12x – 16 = 0
⇔ x 2 – 3x – 4 = 0
⇔ x 2 – 4x + x – 4 = 0
⇔ x(x – 4) + (x – 4) = 0
⇔ (x + 1)(x – 4) = 0
⇔ x + 1 = 0 hoặc x – 4 = 0
x + 1 = 0 ⇔ x = -1
x – 4 = 0 ⇔ x = 4
Vậy phương trình có nghiệm x = -1 hoặc x = 4.
Cho phương trình ẩn x: \(\dfrac{x-m}{x+5}+\dfrac{x-5}{x+m}=2\) (1). Với những giá trị nào của m thì phương trình (1) vô nghiệm
ĐKXĐ : \(x\ne-5;-m\)
\(\dfrac{x-m}{x+5}+\dfrac{x-5}{x+m}=2\left(1\right)\)
\(\Leftrightarrow\dfrac{\left(x-m\right)\left(x+m\right)+\left(x+5\right)\left(x-5\right)}{\left(x+5\right)\left(x+m\right)}=2\)
\(\Leftrightarrow x^2-m^2+x^2-25=2x^2+2xm+10x+10m\)
\(\Leftrightarrow2xm+10x+m^2+10m+25=0\)
\(\Leftrightarrow2x\left(m+5\right)=-\left(m+5\right)^2\)
\(\Leftrightarrow x=\dfrac{-\left(m+5\right)}{2}\)
PT \(\left(1\right)\) VN \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{-\left(m+5\right)}{2}=-5\\\dfrac{\left(-m+5\right)}{2}=-m\end{matrix}\right.\)
Cho phương trình ẩn x: \(\dfrac{x-m}{x+5}+\dfrac{x-5}{x+m}=2\) (1). Với những giá trị nào của m thì phương trình (1) vô nghiệm
`(x-m)/(x+5)+(x-5)/(x+m)=2`
`ĐK:x ne -5;-m`
`<=>(x^2-m+x^2-5)/((x+5)(x+m))=2`
`<=>2x^2-m-5=2(x+5)(x+m)`
`<=>2x^2-m-5=2(x^2+xm+5x+5m)`
`<=>2x^2-m-5=2x^2+2xm+10x+10m`
`<=>2xm+10x+10m=-m-5`
`<=>2x(m+5)=9m-5`
Pt vô nghiệm
`<=>m+5=0,9m-5 ne 0`
`<=>m=-5,m ne 5/9`
`<=>m=-5`
Vậy `m=-5` thì phương trình vô nghiệm.
Cho phương trình ẩn x: \(\dfrac{x-m}{x+5}+\dfrac{x-5}{x+m}=2\) (1). Với những giá trị nào của m thì phương trình (1) vô nghiệm
Câu này của bạn có người trả lời lúc trước rồi mà
https://hoc24.vn/cau-hoi/cho-phuong-trinh-an-x-dfracx-mx-5-dfracx-5x-m2-1-voi-nhung-gia-tri-nao-cua-m-thi-phuong-trinh-1-vo-nghiem.377204778288
1)Cho phương trình ( 3m -2) x +5=m
a) Với giá trị nào của m thì phương trình đã cho là phương trình bậc nhất một ẩn?
b) Tìm m sao cho phương trình nhận x= -2 làm nghiệm
a: Để đây là phương trình bậc nhất một ẩn thì 3m-2<>0
=>m<>2/3
b: x=-2 là nghiệm của phương trình
=>-2(3m-2)+5=m
=>-6m+4+5-m=0
=>9-7m=0
=>m=9/7