Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 11 2017 lúc 4:14

* Xét điểm M nằm trong góc AOD

Kẻ MH ⊥ OA, MK ⊥ OD

Xét hai tam giác MHO và MKO:

∠(MHO) = ∠(MKO) = 90o

MH = MK

OM cạnh huyền chung

Suy ra: ΔMHO = ΔMKO

(cạnh huyền - cạnh góc vuông)

Suy ra: ∠(MOH) = ∠(MOK)(2 góc tương ứng)

Hay OM là tia phân giác của ∠(AOD).

* Ngược lại, M nằm trên tia phân giác của ∠(AOD)

Xét hai tam giác vuông MHO và MKO, ta có:

∠(MHO) = ∠(MKO)= 90o

∠(MOH) = ∠(MOK)

OM cạnh huyền chung

Suy ra: ΔMHO = ΔMKO (cạnh huyền - góc nhọn)

Suy ra: MH = MK (2 cạnh tương ứng)

Vậy tập hợp các điểm M cách đều OA và OD là tia phân giác Ox của góc AOD.

Tương tự M nằm trong các góc AOC, DOB, BOC thì tập hợp các điểm M là tia phân giác Oy, Oy’, Ox’.

Vậy tập hợp các điểm M cách đều hai đường thẳng AB và CD cắt nhau tại O là hai đường thẳng xx’ và yy’ là đường phân giác của các góc tạo bởi hai đường thẳng AB và CD.

dương thị vinh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 5 2022 lúc 20:55

Nếu điểm M nằm trong góc AOD thì kẻ MH vuông góc với OA, MK vuông góc với OD

Xét ΔMHO vuông tại H và ΔMKO vuông tại K có 

MO chung

MH=MK

Do đó: ΔMHO=ΔMKO

Suy ra: \(\widehat{MOH}=\widehat{MOK}\)

=>M nằm trên tia phân giác của góc AOD

Vì ΔMHO=ΔMKO nên MH=MK

=>Tập hợp điểm M cách đều OA và OD là phân giác Ox của góc AOD

Tương tự M nằm trong các góc AOC, DOB, BOC thì tập hợp các điểm M là tia phân giác Oy, Oy’, Ox’.

Vậy tập hợp các điểm M cách đều hai đường thẳng AB và CD cắt nhau tại O là hai đường thẳng xx’ và yy’ là đường phân giác của các góc tạo bởi hai đường thẳng AB và CD.

Ngọc Duyên DJ
Xem chi tiết
Hoàng Phú Huy
23 tháng 3 2018 lúc 7:02

 tập hợp các điểm cách đều 2 đường thẳng AB và CD

chỉ được 1 điểm

điểm giao điểm với 2  đt đó là O

tạ nguyễn bảo phúc
19 tháng 9 2020 lúc 15:26

kkkkkkko

Khách vãng lai đã xóa
Hương Kiều
Xem chi tiết
balck rose
Xem chi tiết
Nguyễn Hòang Quân
17 tháng 4 2018 lúc 20:47

các điểm cách đêu đoạn thẳng AB và CD là điểm nằm trên tia phân giác của góc AOD,AOC,BOD,BOC

Nguyễn Linh
Xem chi tiết
Nguyễn Quốc Bảo Ngọc
Xem chi tiết
Nao Tomori
Xem chi tiết
Thầy Giáo Toán
30 tháng 8 2015 lúc 22:46

Bài của bạn hay, nhưng bạn viết phần 2/ ẩu quá!.

Câu 1.  Vì O là tâm đường tròn qua hai điểm A,B nên \(OA=OB\to O\) nằm trên trung trực của đoạn thẳng AB cố định. Đảo lại với mỗi điểm O nằm trên trung trực AB, ta vẽ đường tròn tâm O bán kính OA thì đường tròn này đi qua AB.

Câu 2.  Vì IJ  là đường kính của đường tròn (O) nên \(JM\perp CI,IN\perp CJ,CE\perp JI\)  do đó ba đường thẳng \(JM,CE,IN\)  là ba đường cao của tam giác \(CJI\to\) ba đường này đồng quy tại trực tâm tam giác \(CJI.\) Vậy \(D\)  nằm trên đường thẳng AB.

Gọi F là giao điểm của tiếp tuyến tại M với đường thẳng AB. T

a có \(\angle FMC=90^{\circ}-\angle OMI=90^{\circ}-\angle OIM=\angle ECI=\angle MCF\to\Delta FMC\)  cân ở F. Mà tam giác MCD vuông ở M nên \(\angle FMD=\angle FDM\to\Delta DFM\) cân ở F. Thành thử \(F\) là trung điểm CD. Vậy tiếp tuyến ở M cắt CD tại trung điểm của CD.  Tương tự chứng minh được tiếp tuyến tại  N của (O) cũng đi qua trung điểm của CD. Vậy hai tiếp tuyến tại M,N cắt nhau ở tại trung điểm CD.