Phân tích đa thức thành nhân tử:
\(x^4+2010^2+2009x+2010\)
Phân tích các đa thức sau thành nhân tử:
a) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)
b) \(z^4+2010x^2+2009x+2010\)
a) (x + y + z)3 - x3 - y3 - z3
= (x + y + z)3 - z3 - (x3 + y3)
= (x + y + z - z)[(x + y + z)2 + (x + y + z).z + z2) - (x + y)(x2 - xy + y2)
= (x + y)(x2 + y2 + z2 + 2xy + 2yz + 2zx + 2xz + 2yz + z2 + z2) - (x + y)(x2 - xy + y2)
= (x + y)(x2 + y2 + 3z2 + 2xy + 4yz + 4zx) - (x + y)(x2 - xy + y2)
= (x + y)(3z2 + 3xy + 5yz + 4zx)
b) Sửa đề x4 + 2010x2 + 2009x + 2010
= (x4 + x2 + 1) + (2009x2 + 2009x + 2009)
= (x4 + 2x2 + 1 - x2) + 2009(x2 + x + 1)
= [(x2 + 1)2 - x2] + 2009(x2 + x + 1)
= (x2 + x + 1)(x2 - x + 1) + 2009(x2 + x + 1)
= (x2 + x + 1)(x2 - x + 2010)
Phân tích đa thức sau thành nhân tử:
a) (x+y+z)3 - x3 - y3 - z3
b) x4 + 2010x2 + 2009x + 2010
phân tích đa thức thành nhân tử
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(x^4+2010x^2+2009x+2010\)
x4+2010x2+2009x+2010
=x4-x+2010x2+2010x+2010
=x.(x3-1)+2010.(x2+x+1)
=x.(x-1)(x2+x+1)+2010.(x2+x+1)
=(x2+x+1)(x2-x+2010)
(x+y+z)3-x3-y3-z3=(x+y+z-x)[(x+y+z)2+(x+y+z).x+x2]-(y+z)(y2-yz+z2)
=(y+z)(x2+y2+z2+2xy+2yz+2zx+x2+xy+zx+x2)-(y+z)(y2-yz+z2)
=(y+z)(3x2+y2+z2+3xy+2yz+3zx)-(y+z)(y2-yz+z2)
=(y+z)(3x2+y2+z2+3xy+2yz+3zx-y2+yz-z2)
=(y+z)(3x2+3yz+3xy+3zx)
=3.(y+z)(x2+xy+yz+zx)
=3.(y+z)[x.(x+y)+z.(x+y)
=3.(y+z)(x+y)(x+z)
=x3+y3+z3+3(x+y)(x+z)(y+z)-x3-y3-z3
=3(x+y)(x+z)(y+z)-x3-y3-z3
phân tích đa thức x4+2009x2+2008x+2009 thành nhân tử
gọi đa thức phân tích là (x2+ax+b)(x2+cx+d)
(x2+ax+b)(x2+cx+d)=x4+(c+a)x3+x2(d+ac+b)+x(ad+bc)+bd
đồng nhất hệ số ta có a+c = 0
d+b+ac=2009
ad+bc = 2008
bd = 2009
=> a = 1 ; b =1 ; c = -1 ; d =2009
vậy đa thức phân tích là (x^2+x+1)(x^2-x+2009)
bạn phân tích ra xem có đúng ko nha
Phân tích đa thức thành nhân tử: \(x^4+2009x^2+2008x+2009\)
\(x^4+2009x^2+2008x+2009\)
\(=\left(x^4+x^3+x^2\right)+\left(-x^3-x^2-x\right)+\left(2009x^2+2009x+2009\right)\)
\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+2009\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2009\right)\)
Ta có:
\(x^4+2009x^2+2008x+2009\)
\(=\left(x^4+x^3+x^2\right)+\left(-x^3-x^2-x\right)+\left(2009x^2+2009x+2009\right)\)
\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+2009\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2009\right)\)
Phân tích đa thức thành nhân tử:
(x2011 - x2010 + 1)(x2011 - x2010 + 2) - 20
đặt x2011-x2010+1=t thì đa thức trở thành:
t(t+1)-20=t2+t-20=(t2-5t)+(4t-20)=t(t-5)+4(t-5)=(t-5)(t+4)(*)
thay t= x2011-x2010+1 vào (*) ta có:
( x2011-x2010+1-5)( x2011-x2010+1+4)=( x2011-x2010-4)( x2011-x2010+5)
=>( x2011-x2010+1)( x2011-x2010+2)-20=( x2011-x2010-4)( x2011-x2010+5)
Phân tích đa thức sau thành nhân tử
x4 + 2009x2 + 2008x + 2009
x4+2009x2+2008x+2009
=(x4-x)+(2009x2+2009x+2009)
=x(x3-1)+2009(x2+x+1)
=x(x-1)(x2+x+1)+2009(x2+x+1)
=(x2+x+1)(x(x-1)+2009)
=(x2+x+1)(x2-x+2009)
k mình nha, chúc bạn học giỏi!!!
cách 1 dùng hệ số bất định
có hệ
a+c=0
ac+b+d= 2009
ad+bc=2008
bd=2009
Ta tìm được a=1,b=1,d=2009,c=-1
=> (x^2+x+1)(x^2-x+2009)=0
Cách 2:
có (x^2+m)^2 =2mx^2+m^2 +2009x^2+2009x+2009=x^2(2009+2m) +2008x +2009+m^2
xét \delta thấy vô nghiệm => PT vô nghiệm
x4 +2009x2 +2008x + 2009 = (x4 +x3 +x2 ) + (– x3 – x2 – x) +(2009 x2 + 2009x + 2009 ) =
x2(x2 +x + 1) – x (x2 +x + 1) + 2009 (x2 +x + 1) = (x2 +x + 1)( x2 – x + 2009)
Để ý rằng: Tam thức x2 +x + 1 có ∆ = 12 – 4 = – 3 < 0 và tam thức x2 – x + 2009 có ∆ = 12 – 4.2009 = –8035 < 0 nên các tam thức đó bất khả qui trên R . Vậy kết quả phân tích trên là kết quả cuối cùng.
Vậy phương trình có một nghiệm x = –15.
phân tích đa thức thành nhân tử
a) x^8+x^5+1
b) x*(x-3)-2010*2013
cho đa thức f(x)=x2010 -2009x2009-2009x2008-2009x2007-...-2009x+1
tính f(2010)