Cho a>b>c t/m: \(3a^2+3b^2=10ab\).Tính giá trị biểu thức \(P=\dfrac{a-b}{a+b}\)
Cho 3a^2+3b^2=10ab vad b>a>0
Tính giá trị của biểu thức P=a-b/a+b
cho a>b>0 và 3a2+3b2=10ab. Tính giá trị biểu thức P = (a-b)/(a+b)
Ta có:
\(3a^2+3b^2=10ab\Leftrightarrow\left(3a-b\right)\left(a-3b\right)=0\Rightarrow a=3b\)
Cho a>b>0 thỏa mãn 3a2+3b2=10ab. Tính giá trị biểu thức P= (a-b) / (a+b)
Cho a>b>0 thỏa mãn 3a2+3b2=10ab. Tính giá trị biểu thức P=a-b/a+b
cho a>b>0 thỏa mãn 3a2+3b2=10ab. Tính giá trị biểu thức \(\dfrac{a-b}{a+b}\)
\(3a^2+3b^2=10ab\)
\(\Rightarrow3a^2-10ab+3b^2=0\)
\(\Rightarrow3a^2-9ab-ab+3b^2=0\)
\(\Rightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)
\(\Rightarrow\left(3a-b\right)\left(a-3b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3a-b=0\\a-3b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3a=b\\a=3b\end{matrix}\right.\)
\(a>b>0\)
\(\Rightarrow a=3b\)
Thay vào biểu thức ta có:
\(\dfrac{a-b}{a+b}=\dfrac{3b-b}{3b+b}=\dfrac{2b}{4b}=\dfrac{1}{2}\)
Cho a>b>0 thỏa mãn 3a2+3b2=10ab. Tính giá trị của biểu thức P=a-b/a+b
Cho a>b>0 thỏa mãn 3a2 + 3b2 = 10ab. Tính giá trị biểu thức P= a - b / a + b
Xét \(3a^2+3b^2=10ab\Rightarrow a^2+b^2=\frac{10ab}{3}\)
hay: \(a^2+b^2=\frac{10}{3}ab\Rightarrow a^2+b^2+2ab=\frac{10}{3}ab+2ab\Rightarrow\left(a+b\right)^2=\frac{16}{3}ab\) (1)
\(a^2+b^2=\frac{10}{3}ab\Rightarrow a^2+b^2-2ab=\frac{10}{3}ab-2ab\Rightarrow\left(a-b\right)^2=\frac{4}{3}ab\) (2)
Ta có \(p=\frac{a+b}{a-b}\Rightarrow p^2=\frac{\left(a+b\right)^2}{\left(a-b\right)^2}=\frac{\frac{16}{3}ab}{\frac{4}{3}ab}=4\) Vậy \(p=2\) hoặc \(p=-2\)
ta có 3a^2 +3b^2=10ab
<=> 3a(a-3b) - b(a-3b)=0
<=> (3a-b)(a-3b)=0
=> a=3b ; 3a=b (loại vì a>b>0)
thay a=3b
ta có P=3b-b/3a+b
= 2b/4b
=1/2
CHO a>b>0 THỎA MÃN 3a2 + 3b2 = 10ab. TÍNH GIÁ TRỊ BIỂU THỨC M=( a-b)/ (a+b)
DẤU / LÀ CHIA NHA
AI LÀM ĐƯỢC CHO 2TICK LUÔN
THANK
Bạn tham khảo bài làm của mình dưới đây nhé :
Câu hỏi của phạm anh thơ - Toán lớp 8 - Học toán với OnlineMath
\(3a^2+3b^2=10ab\)
\(\Leftrightarrow3a^2+3b^2-ab-9ab=0\)
\(\Leftrightarrow a\left(3a-b\right)-3b\left(3a-b\right)=0\Leftrightarrow\left(a-3b\right)\left(3a-b\right)=0\)
\(a>b>0\Leftrightarrow3a>b\Leftrightarrow3a-b>0\)
\(\Leftrightarrow a=3b\)
\(M=\frac{a-b}{a+b}=\frac{3b-b}{3b+b}=\frac{2b}{4b}=\frac{1}{2}\)
sorry nha bạn bỏ t/h b = 3a vì a > b nha
Cho 3a2 + 3b2 = 10ab và b > a > 0 .
Tính giá trị của biểu thức \(P=\frac{a-b}{a+b}\)
Vì \(b>a>0\Rightarrow P=\frac{a-b}{a+b}< 0\)
Ta có : \(P^2=\frac{\left(a-b\right)^2}{\left(a+b\right)^2}=\frac{a^2-2ab+b^2}{a^2+2ab+b^2}=\frac{3a^2+3b^2-6ab}{3a^2+3b^2+6ab}=\frac{10ab-6ab}{10ab+6ab}=\frac{4}{16}\)
\(\Rightarrow\orbr{\begin{cases}P=-\frac{1}{2}\\P=\frac{1}{2}\end{cases}}\) Mà P < 0 nên \(P=-\frac{1}{2}\)
Vậy \(P=\frac{a-b}{a+b}=-\frac{1}{2}\)
Sao cách em làm ra kết quả khác ah Hùng ạ:Câu hỏi của Phan Thị Hồng Nhung - Toán lớp 9